A Comprehensive Evaluation of Large Language Models on Benchmark Biomedical Text Processing Tasks

水准点(测量) 任务(项目管理) 计算机科学 领域(数学分析) 工作(物理) 人工智能 数据科学 工程类 地理 数学 机械工程 数学分析 大地测量学 系统工程
作者
Israt Jahan,Md Tahmid Rahman Laskar,Chun Peng,Jimmy Xiangji Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.04270
摘要

Recently, Large Language Models (LLM) have demonstrated impressive capability to solve a wide range of tasks. However, despite their success across various tasks, no prior work has investigated their capability in the biomedical domain yet. To this end, this paper aims to evaluate the performance of LLMs on benchmark biomedical tasks. For this purpose, we conduct a comprehensive evaluation of 4 popular LLMs in 6 diverse biomedical tasks across 26 datasets. To the best of our knowledge, this is the first work that conducts an extensive evaluation and comparison of various LLMs in the biomedical domain. Interestingly, we find based on our evaluation that in biomedical datasets that have smaller training sets, zero-shot LLMs even outperform the current state-of-the-art fine-tuned biomedical models. This suggests that pretraining on large text corpora makes LLMs quite specialized even in the biomedical domain. We also find that not a single LLM can outperform other LLMs in all tasks, with the performance of different LLMs may vary depending on the task. While their performance is still quite poor in comparison to the biomedical models that were fine-tuned on large training sets, our findings demonstrate that LLMs have the potential to be a valuable tool for various biomedical tasks that lack large annotated data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grondwet完成签到,获得积分10
1秒前
今后应助淡然平灵采纳,获得10
1秒前
2秒前
让大佐眯会吧完成签到,获得积分10
2秒前
li完成签到,获得积分10
2秒前
3秒前
鹿友绿完成签到,获得积分10
3秒前
小二郎应助ayuyu采纳,获得30
5秒前
5秒前
勤奋青寒完成签到,获得积分10
6秒前
6秒前
左左发布了新的文献求助10
6秒前
6秒前
慕青应助cx采纳,获得10
7秒前
basil发布了新的文献求助10
8秒前
kuku发布了新的文献求助10
8秒前
8秒前
哈哈哈发布了新的文献求助10
9秒前
乐观大雁发布了新的文献求助10
10秒前
xiaoq发布了新的文献求助10
10秒前
10秒前
陈M雯发布了新的文献求助10
10秒前
12秒前
12秒前
zbq发布了新的文献求助30
12秒前
慕青应助郑石采纳,获得10
12秒前
13秒前
13秒前
牛马发布了新的文献求助20
13秒前
14秒前
14秒前
Ava应助左左采纳,获得10
15秒前
15秒前
阿盛发布了新的文献求助10
15秒前
Zxq发布了新的文献求助10
16秒前
16秒前
张佳浩发布了新的文献求助10
17秒前
Buduan发布了新的文献求助10
17秒前
迷人素发布了新的文献求助30
18秒前
Wxx025完成签到,获得积分20
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482967
求助须知:如何正确求助?哪些是违规求助? 3072430
关于积分的说明 9126657
捐赠科研通 2764067
什么是DOI,文献DOI怎么找? 1516839
邀请新用户注册赠送积分活动 701816
科研通“疑难数据库(出版商)”最低求助积分说明 700721