清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic detection and classification of lung cancer CT scans based on deep learning and ebola optimization search algorithm

肺癌 算法 计算机科学 癌症 人工智能 机器学习 医学 病理 内科学
作者
Tehnan I. A. Mohamed,Olaide N. Oyelade,Absalom E. Ezugwu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (8): e0285796-e0285796 被引量:46
标识
DOI:10.1371/journal.pone.0285796
摘要

Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in recent years. Early lung cancer diagnosis and detection would reliably promote safety and the survival of many lives globally. The precise classification of lung cancer using medical images will help physicians select suitable therapy to reduce cancer mortality. Much work has been carried out in lung cancer detection using CNN. However, lung cancer prediction still becomes difficult due to the multifaceted designs in the CT scan. Moreover, CNN models have challenges that affect their performance, including choosing the optimal architecture, selecting suitable model parameters, and picking the best values for weights and biases. To address the problem of selecting optimal weight and bias combination required for classification of lung cancer in CT images, this study proposes a hybrid metaheuristic and CNN algorithm. We first designed a CNN architecture and then computed the solution vector of the model. The resulting solution vector was passed to the Ebola optimization search algorithm (EOSA) to select the best combination of weights and bias to train the CNN model to handle the classification problem. After thoroughly training the EOSA-CNN hybrid model, we obtained the optimal configuration, which yielded good performance. Experimentation with the publicly accessible Iraq-Oncology Teaching Hospital / National Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset showed that the EOSA metaheuristic algorithm yielded a classification accuracy of 0.9321. Similarly, the performance comparisons of EOSA-CNN with other methods, namely, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and the classical CNN, were also computed and presented. The result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and sensitivity of 0.9038, 0.13333, and 0.9071 for normal, benign, and malignant cases, respectively. This confirms that the hybrid algorithm provides a good solution for the classification of lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的飞槐完成签到 ,获得积分10
13秒前
Feng完成签到,获得积分20
16秒前
longer完成签到 ,获得积分10
24秒前
默默的筝完成签到 ,获得积分10
33秒前
科研通AI5应助Kylin采纳,获得10
40秒前
南浔完成签到 ,获得积分10
47秒前
熊二完成签到,获得积分10
1分钟前
路过完成签到,获得积分10
1分钟前
zhenzhen完成签到,获得积分10
1分钟前
Connie完成签到,获得积分10
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
luckygirl完成签到 ,获得积分10
1分钟前
自然的含蕾完成签到 ,获得积分10
1分钟前
FloppyWow发布了新的文献求助10
2分钟前
瘦瘦小萱完成签到 ,获得积分10
2分钟前
隐形曼青应助颜林林采纳,获得10
2分钟前
FloppyWow发布了新的文献求助10
2分钟前
jimmy_bytheway完成签到,获得积分0
2分钟前
FloppyWow发布了新的文献求助10
2分钟前
2分钟前
颜林林发布了新的文献求助10
2分钟前
喵喵完成签到 ,获得积分10
2分钟前
健壮的怜烟完成签到,获得积分10
2分钟前
叽里呱啦完成签到 ,获得积分10
2分钟前
Judy完成签到 ,获得积分0
3分钟前
小杨完成签到 ,获得积分10
3分钟前
Kylin发布了新的文献求助10
3分钟前
FloppyWow完成签到,获得积分10
3分钟前
啦啦啦啦完成签到 ,获得积分10
3分钟前
噜噜晓完成签到 ,获得积分10
3分钟前
虚幻元风完成签到 ,获得积分10
3分钟前
土拨鼠完成签到 ,获得积分10
3分钟前
关关过完成签到 ,获得积分10
3分钟前
wangye完成签到 ,获得积分10
3分钟前
幺零零完成签到,获得积分10
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491367
求助须知:如何正确求助?哪些是违规求助? 3077983
关于积分的说明 9151323
捐赠科研通 2770626
什么是DOI,文献DOI怎么找? 1520561
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702323