Federated Split Learning With Data and Label Privacy Preservation in Vehicular Networks

上传 差别隐私 计算机科学 联合学习 信息隐私 深度学习 数据建模 激励 智能交通系统 数据交换 计算机安全 计算机网络 人工智能 数据挖掘 万维网 数据库 工程类 运输工程 经济 微观经济学
作者
Maoqiang Wu,Guoliang Cheng,Dongdong Ye,Jiawen Kang,Rong Yu,Yuan Wu,Miao Pan
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (1): 1223-1238 被引量:9
标识
DOI:10.1109/tvt.2023.3304176
摘要

Federated learning (FL) is an emerging distributed learning paradigm widely used in vehicular networks, where vehicles are enabled to train the deep model for the server while keeping private data locally. However, the annotation of private data by vehicular users is very difficult since the high costs and professional needs, and one solution is that roadside infrastructures could provide label mapping to the data according to the geographical coordinates. In this scenario where vehicles and roadside infrastructures hold the data and labels, respectively, traditional FL is not applicable since it needs each participant to have both data and labels. In this paper, we propose a federated split learning (FSL) paradigm that split the deep model into two submodels which are trained separately in the vehicles and the roadside infrastructures. The vehicles and the roadside infrastructures exchange the intermediate data (i.e., smashed data and cut layer gradients) in training local submodels and upload the local gradients to the global server for aggregation into the global model. Specifically, we first adopt three types of privacy attacks to demonstrate that attackers could recover the private data and labels according to the shared intermediate data and uploaded local gradients. We then propose a differential privacy (DP)-based defense mechanism to defend the privacy attacks by perturbing the intermediate data. Furthermore, we design a contract-based incentive mechanism that encourages vehicles and roadside infrastructures to enhance training performance by adjusting their privacy strategies. The simulation results illustrated that the proposed defense mechanism can remarkably emasculate the performance of attacks and the proposed incentive mechanism is efficient in the FSL paradigm for vehicular networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Am1r完成签到,获得积分10
1秒前
tangtang完成签到,获得积分10
1秒前
2秒前
白嫖论文发布了新的文献求助10
2秒前
luvie完成签到,获得积分10
3秒前
4秒前
6秒前
香蕉觅云应助yuan采纳,获得10
7秒前
香蕉觅云应助温暖的复天采纳,获得30
7秒前
卿xx完成签到,获得积分10
7秒前
1232完成签到 ,获得积分10
8秒前
木瓜完成签到 ,获得积分10
8秒前
wgnahoa发布了新的文献求助10
8秒前
9秒前
阳光的凌雪完成签到 ,获得积分10
10秒前
大个应助女爰舍予采纳,获得10
10秒前
马龙完成签到,获得积分10
10秒前
Orange应助诸忆雪采纳,获得10
11秒前
12秒前
12秒前
一天三个蛋完成签到,获得积分10
12秒前
ww发布了新的文献求助10
13秒前
13秒前
科研工作者完成签到,获得积分10
16秒前
17秒前
姚哈哈发布了新的文献求助10
18秒前
18秒前
18秒前
居正完成签到,获得积分10
19秒前
20秒前
20秒前
感动的飞莲完成签到 ,获得积分10
21秒前
21秒前
natianhao发布了新的文献求助10
21秒前
兰晋彤完成签到,获得积分20
22秒前
斯文的以亦完成签到,获得积分10
22秒前
huh完成签到,获得积分10
23秒前
aga发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875