Federated Split Learning With Data and Label Privacy Preservation in Vehicular Networks

上传 差别隐私 计算机科学 联合学习 信息隐私 深度学习 数据建模 激励 智能交通系统 数据交换 计算机安全 计算机网络 人工智能 数据挖掘 万维网 数据库 工程类 运输工程 经济 微观经济学
作者
Maoqiang Wu,Guoliang Cheng,Dongdong Ye,Jiawen Kang,Rong Yu,Yuan Wu,Miao Pan
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (1): 1223-1238 被引量:9
标识
DOI:10.1109/tvt.2023.3304176
摘要

Federated learning (FL) is an emerging distributed learning paradigm widely used in vehicular networks, where vehicles are enabled to train the deep model for the server while keeping private data locally. However, the annotation of private data by vehicular users is very difficult since the high costs and professional needs, and one solution is that roadside infrastructures could provide label mapping to the data according to the geographical coordinates. In this scenario where vehicles and roadside infrastructures hold the data and labels, respectively, traditional FL is not applicable since it needs each participant to have both data and labels. In this paper, we propose a federated split learning (FSL) paradigm that split the deep model into two submodels which are trained separately in the vehicles and the roadside infrastructures. The vehicles and the roadside infrastructures exchange the intermediate data (i.e., smashed data and cut layer gradients) in training local submodels and upload the local gradients to the global server for aggregation into the global model. Specifically, we first adopt three types of privacy attacks to demonstrate that attackers could recover the private data and labels according to the shared intermediate data and uploaded local gradients. We then propose a differential privacy (DP)-based defense mechanism to defend the privacy attacks by perturbing the intermediate data. Furthermore, we design a contract-based incentive mechanism that encourages vehicles and roadside infrastructures to enhance training performance by adjusting their privacy strategies. The simulation results illustrated that the proposed defense mechanism can remarkably emasculate the performance of attacks and the proposed incentive mechanism is efficient in the FSL paradigm for vehicular networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书雪发布了新的文献求助10
刚刚
俞若枫完成签到,获得积分0
刚刚
今后应助wu采纳,获得10
刚刚
可靠之玉发布了新的文献求助10
1秒前
深情安青应助交理采纳,获得10
1秒前
所所应助敏敏采纳,获得10
1秒前
1秒前
吴威武发布了新的文献求助100
1秒前
JC完成签到,获得积分10
2秒前
Nora完成签到,获得积分10
2秒前
独特乘云完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助dog采纳,获得10
3秒前
思源应助wsz采纳,获得10
3秒前
4秒前
4秒前
微笑柜子发布了新的文献求助10
5秒前
5秒前
共享精神应助西部牛仔采纳,获得10
5秒前
wjh发布了新的文献求助10
5秒前
菜鸡完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
笨笨的秋蝶完成签到,获得积分10
6秒前
火星上手机完成签到 ,获得积分10
6秒前
Soul发布了新的文献求助10
6秒前
7秒前
7秒前
yingzaifeixiang完成签到,获得积分10
7秒前
斯文败类应助粟裕的风采纳,获得10
7秒前
7秒前
Moi发布了新的文献求助10
8秒前
8秒前
小二郎应助凉风有信9527采纳,获得10
8秒前
8秒前
8秒前
jy完成签到,获得积分10
9秒前
零立方发布了新的文献求助10
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646