亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Split Learning With Data and Label Privacy Preservation in Vehicular Networks

上传 差别隐私 计算机科学 联合学习 信息隐私 深度学习 数据建模 激励 智能交通系统 数据交换 计算机安全 计算机网络 人工智能 数据挖掘 万维网 数据库 工程类 运输工程 经济 微观经济学
作者
Maoqiang Wu,Guoliang Cheng,Dongdong Ye,Jiawen Kang,Rong Yu,Yuan Wu,Miao Pan
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (1): 1223-1238 被引量:9
标识
DOI:10.1109/tvt.2023.3304176
摘要

Federated learning (FL) is an emerging distributed learning paradigm widely used in vehicular networks, where vehicles are enabled to train the deep model for the server while keeping private data locally. However, the annotation of private data by vehicular users is very difficult since the high costs and professional needs, and one solution is that roadside infrastructures could provide label mapping to the data according to the geographical coordinates. In this scenario where vehicles and roadside infrastructures hold the data and labels, respectively, traditional FL is not applicable since it needs each participant to have both data and labels. In this paper, we propose a federated split learning (FSL) paradigm that split the deep model into two submodels which are trained separately in the vehicles and the roadside infrastructures. The vehicles and the roadside infrastructures exchange the intermediate data (i.e., smashed data and cut layer gradients) in training local submodels and upload the local gradients to the global server for aggregation into the global model. Specifically, we first adopt three types of privacy attacks to demonstrate that attackers could recover the private data and labels according to the shared intermediate data and uploaded local gradients. We then propose a differential privacy (DP)-based defense mechanism to defend the privacy attacks by perturbing the intermediate data. Furthermore, we design a contract-based incentive mechanism that encourages vehicles and roadside infrastructures to enhance training performance by adjusting their privacy strategies. The simulation results illustrated that the proposed defense mechanism can remarkably emasculate the performance of attacks and the proposed incentive mechanism is efficient in the FSL paradigm for vehicular networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
聪明的泡面完成签到 ,获得积分10
6秒前
8秒前
9秒前
俊逸沛菡完成签到 ,获得积分10
9秒前
GYN发布了新的文献求助10
12秒前
13秒前
colorshark发布了新的文献求助10
14秒前
英姑应助bsdd采纳,获得10
17秒前
伊坂完成签到 ,获得积分10
35秒前
45秒前
46秒前
科目三应助被人强迫的采纳,获得10
47秒前
超帅无血完成签到,获得积分10
49秒前
Tian完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ktw完成签到,获得积分10
1分钟前
1分钟前
snsut发布了新的文献求助30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
辣椒完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xbbccc完成签到,获得积分10
3分钟前
上官若男应助snsut采纳,获得10
3分钟前
33完成签到,获得积分0
3分钟前
snsut完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
华仔应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
4分钟前
sangsang完成签到,获得积分10
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015685
关于积分的说明 8871632
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482248
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951