已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Federated Split Learning With Data and Label Privacy Preservation in Vehicular Networks

上传 差别隐私 计算机科学 联合学习 信息隐私 深度学习 数据建模 激励 智能交通系统 数据交换 计算机安全 计算机网络 人工智能 数据挖掘 万维网 数据库 工程类 运输工程 经济 微观经济学
作者
Maoqiang Wu,Guoliang Cheng,Dongdong Ye,Jiawen Kang,Rong Yu,Yuan Wu,Miao Pan
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (1): 1223-1238 被引量:9
标识
DOI:10.1109/tvt.2023.3304176
摘要

Federated learning (FL) is an emerging distributed learning paradigm widely used in vehicular networks, where vehicles are enabled to train the deep model for the server while keeping private data locally. However, the annotation of private data by vehicular users is very difficult since the high costs and professional needs, and one solution is that roadside infrastructures could provide label mapping to the data according to the geographical coordinates. In this scenario where vehicles and roadside infrastructures hold the data and labels, respectively, traditional FL is not applicable since it needs each participant to have both data and labels. In this paper, we propose a federated split learning (FSL) paradigm that split the deep model into two submodels which are trained separately in the vehicles and the roadside infrastructures. The vehicles and the roadside infrastructures exchange the intermediate data (i.e., smashed data and cut layer gradients) in training local submodels and upload the local gradients to the global server for aggregation into the global model. Specifically, we first adopt three types of privacy attacks to demonstrate that attackers could recover the private data and labels according to the shared intermediate data and uploaded local gradients. We then propose a differential privacy (DP)-based defense mechanism to defend the privacy attacks by perturbing the intermediate data. Furthermore, we design a contract-based incentive mechanism that encourages vehicles and roadside infrastructures to enhance training performance by adjusting their privacy strategies. The simulation results illustrated that the proposed defense mechanism can remarkably emasculate the performance of attacks and the proposed incentive mechanism is efficient in the FSL paradigm for vehicular networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意黑夜完成签到,获得积分10
刚刚
2秒前
2秒前
乔达摩完成签到 ,获得积分10
4秒前
犹豫梦菡完成签到,获得积分10
5秒前
5秒前
怡然枫叶发布了新的文献求助10
6秒前
LX发布了新的文献求助30
7秒前
小蘑菇应助顺利的边牧采纳,获得10
9秒前
上善若水呦完成签到 ,获得积分10
12秒前
14秒前
乔达摩悉达多完成签到 ,获得积分10
15秒前
Jacquielin完成签到 ,获得积分10
16秒前
16秒前
17秒前
伊萨卡完成签到 ,获得积分10
17秒前
18秒前
19秒前
韩soso完成签到,获得积分10
22秒前
mmyhn发布了新的文献求助10
22秒前
Coral.发布了新的文献求助10
23秒前
LX完成签到,获得积分10
25秒前
工藤新一完成签到,获得积分10
26秒前
as12发布了新的文献求助10
27秒前
大模型应助工藤新一采纳,获得10
30秒前
31秒前
33秒前
HC应助灯飞采纳,获得10
36秒前
37秒前
39秒前
jpc完成签到,获得积分10
42秒前
43秒前
所所应助叫秋田犬的猫采纳,获得10
44秒前
blue发布了新的文献求助10
45秒前
leoelizabeth完成签到 ,获得积分10
46秒前
48秒前
Dr.miao发布了新的文献求助10
48秒前
49秒前
彳亍发布了新的文献求助10
50秒前
希望天下0贩的0应助ChiaJan采纳,获得10
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994330
求助须知:如何正确求助?哪些是违规求助? 3534764
关于积分的说明 11266452
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749