Federated Split Learning With Data and Label Privacy Preservation in Vehicular Networks

上传 差别隐私 计算机科学 联合学习 信息隐私 深度学习 数据建模 激励 智能交通系统 数据交换 计算机安全 计算机网络 人工智能 数据挖掘 万维网 数据库 工程类 运输工程 经济 微观经济学
作者
Maoqiang Wu,Guoliang Cheng,Dongdong Ye,Jiawen Kang,Rong Yu,Yuan Wu,Miao Pan
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (1): 1223-1238 被引量:9
标识
DOI:10.1109/tvt.2023.3304176
摘要

Federated learning (FL) is an emerging distributed learning paradigm widely used in vehicular networks, where vehicles are enabled to train the deep model for the server while keeping private data locally. However, the annotation of private data by vehicular users is very difficult since the high costs and professional needs, and one solution is that roadside infrastructures could provide label mapping to the data according to the geographical coordinates. In this scenario where vehicles and roadside infrastructures hold the data and labels, respectively, traditional FL is not applicable since it needs each participant to have both data and labels. In this paper, we propose a federated split learning (FSL) paradigm that split the deep model into two submodels which are trained separately in the vehicles and the roadside infrastructures. The vehicles and the roadside infrastructures exchange the intermediate data (i.e., smashed data and cut layer gradients) in training local submodels and upload the local gradients to the global server for aggregation into the global model. Specifically, we first adopt three types of privacy attacks to demonstrate that attackers could recover the private data and labels according to the shared intermediate data and uploaded local gradients. We then propose a differential privacy (DP)-based defense mechanism to defend the privacy attacks by perturbing the intermediate data. Furthermore, we design a contract-based incentive mechanism that encourages vehicles and roadside infrastructures to enhance training performance by adjusting their privacy strategies. The simulation results illustrated that the proposed defense mechanism can remarkably emasculate the performance of attacks and the proposed incentive mechanism is efficient in the FSL paradigm for vehicular networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潜心如水发布了新的文献求助10
1秒前
酷波er应助沉静的曼荷采纳,获得10
1秒前
VDC应助ceeray23采纳,获得30
1秒前
研友_VZG7GZ应助沈梓兴采纳,获得10
2秒前
冯xiaoni发布了新的文献求助30
2秒前
2秒前
科研狗完成签到,获得积分10
3秒前
3秒前
派大星的海洋裤完成签到,获得积分10
3秒前
qingfengnai完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
panjunlu完成签到,获得积分10
5秒前
kenyvvv发布了新的文献求助10
7秒前
勤劳滑板发布了新的文献求助10
7秒前
Lynn完成签到,获得积分10
8秒前
浅浅依云完成签到,获得积分10
9秒前
木寻寻发布了新的文献求助10
9秒前
小六九完成签到 ,获得积分10
11秒前
斯文败类应助NANFENGSUSU采纳,获得10
11秒前
小宋娘亲完成签到 ,获得积分10
11秒前
XI完成签到 ,获得积分10
13秒前
13秒前
yeezy123发布了新的文献求助30
14秒前
NexusExplorer应助起床别睡了采纳,获得10
16秒前
共享精神应助小樊啦采纳,获得10
16秒前
研究生发布了新的文献求助10
18秒前
18秒前
LK完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
我爱学习呢完成签到,获得积分10
20秒前
20秒前
老迟到的澜完成签到,获得积分10
21秒前
欧气青年完成签到,获得积分10
21秒前
NANFENGSUSU发布了新的文献求助10
23秒前
23秒前
Alvin完成签到 ,获得积分10
24秒前
24秒前
张雪晴完成签到,获得积分10
25秒前
沈梓兴发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142528
求助须知:如何正确求助?哪些是违规求助? 4340819
关于积分的说明 13518240
捐赠科研通 4180740
什么是DOI,文献DOI怎么找? 2292579
邀请新用户注册赠送积分活动 1293245
关于科研通互助平台的介绍 1235752