已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The impact of China's green credit policy on enterprise digital innovation: evidence from heavily-polluting Chinese listed companies

业务 中国 产业组织 独创性 价值(数学) 经济 机器学习 创造力 政治学 计算机科学 法学
作者
Qiang Lu,Yang Deng,Xinyi Wang,Aiping Wang
出处
期刊:China Finance Review International [Emerald (MCB UP)]
卷期号:14 (1): 103-121 被引量:43
标识
DOI:10.1108/cfri-11-2022-0224
摘要

Purpose As an effective tool to promote rational resource allocation and facilitate the development of green management practices such as enterprise digital innovation, the green credit policy has recently gained extensive attention. The purpose of this paper is to analyze the relationship between green credit policies and the digital innovation of enterprises, and to further explore the mechanism of action between them and their boundary conditions. Design/methodology/approach Based on micro-level data on Chinese firms from 2007 to 2019, this paper constructs a difference-in-differences (DID) model to investigate the impact and intrinsic mechanisms of green credit policies on firms' digital innovation and its boundary conditions, with the help of a quasi-natural experiment, i.e. the Green Credit Guidelines. Findings Green credit policies inhibit digital innovation and fail to compensate for innovation. The analysis of the mechanism shows that the implementation of green credit policies has a negative impact on digital innovation by increasing the financing constraints faced by firms, and has also a crowding-out effect on R&D investment, resulting in a disincentive to digital innovation. Further analysis reveals that the negative impact of green credit policies on digital innovation is more pronounced in state-owned enterprises, enterprises without financially experienced executives, and in the eastern regions of China. Originality/value This study provides empirical evidence to understand the effectiveness and mechanism of influence of green credit policies on enterprise digital innovation, providing also a basis to further improve green credit policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao122发布了新的文献求助10
1秒前
zz发布了新的文献求助10
3秒前
4秒前
Magali发布了新的文献求助30
5秒前
6秒前
忧虑的羊发布了新的文献求助10
6秒前
善学以致用应助yuxiuzhang采纳,获得10
7秒前
Yifan2024应助qiannnn采纳,获得10
7秒前
Akaashi发布了新的文献求助10
7秒前
Tao122完成签到,获得积分10
8秒前
tursun完成签到,获得积分10
10秒前
10秒前
Candice完成签到,获得积分0
26秒前
Diligency完成签到 ,获得积分10
28秒前
嗷嗷嗷完成签到 ,获得积分10
29秒前
30秒前
潇潇雨歇发布了新的文献求助50
30秒前
adinike发布了新的文献求助10
32秒前
34秒前
36秒前
36秒前
Cc8完成签到,获得积分10
38秒前
昵称发布了新的文献求助10
39秒前
为与传发布了新的文献求助10
39秒前
Clover发布了新的文献求助10
40秒前
无花果应助guygun采纳,获得10
41秒前
CipherSage应助为与传采纳,获得10
48秒前
51秒前
NexusExplorer应助漂亮的鸡采纳,获得10
52秒前
李健的小迷弟应助tlx采纳,获得10
53秒前
55秒前
guygun发布了新的文献求助10
57秒前
57秒前
夏凛完成签到 ,获得积分10
58秒前
余闻问完成签到,获得积分10
1分钟前
guygun完成签到,获得积分10
1分钟前
2213sss完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353363
求助须知:如何正确求助?哪些是违规求助? 2977981
关于积分的说明 8683154
捐赠科研通 2659256
什么是DOI,文献DOI怎么找? 1456109
科研通“疑难数据库(出版商)”最低求助积分说明 674278
邀请新用户注册赠送积分活动 664978