The impact of China's green credit policy on enterprise digital innovation: evidence from heavily-polluting Chinese listed companies

业务 中国 产业组织 独创性 价值(数学) 经济 机器学习 创造力 政治学 计算机科学 法学
作者
Qiang Lu,Yang Deng,Xinyi Wang,Aiping Wang
出处
期刊:China Finance Review International [Emerald (MCB UP)]
卷期号:14 (1): 103-121 被引量:86
标识
DOI:10.1108/cfri-11-2022-0224
摘要

Purpose As an effective tool to promote rational resource allocation and facilitate the development of green management practices such as enterprise digital innovation, the green credit policy has recently gained extensive attention. The purpose of this paper is to analyze the relationship between green credit policies and the digital innovation of enterprises, and to further explore the mechanism of action between them and their boundary conditions. Design/methodology/approach Based on micro-level data on Chinese firms from 2007 to 2019, this paper constructs a difference-in-differences (DID) model to investigate the impact and intrinsic mechanisms of green credit policies on firms' digital innovation and its boundary conditions, with the help of a quasi-natural experiment, i.e. the Green Credit Guidelines. Findings Green credit policies inhibit digital innovation and fail to compensate for innovation. The analysis of the mechanism shows that the implementation of green credit policies has a negative impact on digital innovation by increasing the financing constraints faced by firms, and has also a crowding-out effect on R&D investment, resulting in a disincentive to digital innovation. Further analysis reveals that the negative impact of green credit policies on digital innovation is more pronounced in state-owned enterprises, enterprises without financially experienced executives, and in the eastern regions of China. Originality/value This study provides empirical evidence to understand the effectiveness and mechanism of influence of green credit policies on enterprise digital innovation, providing also a basis to further improve green credit policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王则华完成签到,获得积分10
1秒前
zyy发布了新的文献求助10
1秒前
1秒前
如意厉完成签到,获得积分10
2秒前
2秒前
大个应助魏映霞采纳,获得10
2秒前
Llllllllily应助欣喜十八采纳,获得10
3秒前
AN发布了新的文献求助30
3秒前
3秒前
1526完成签到,获得积分10
3秒前
vv发布了新的文献求助10
3秒前
酷波er应助花根采纳,获得10
4秒前
今后应助花根采纳,获得10
4秒前
明明完成签到,获得积分10
4秒前
西红柿发布了新的文献求助10
4秒前
DearJulie完成签到,获得积分20
4秒前
qinshimigyue完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
完美问玉完成签到,获得积分10
6秒前
huangyulin66发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
wh完成签到 ,获得积分10
8秒前
丘比特应助宋佳采纳,获得10
8秒前
soso发布了新的文献求助10
8秒前
王嵩嵩完成签到,获得积分10
8秒前
8秒前
kiana发布了新的文献求助10
9秒前
wangruize完成签到,获得积分10
10秒前
10秒前
10秒前
蓦然回首完成签到,获得积分10
11秒前
小璐璐呀发布了新的文献求助10
11秒前
小白发布了新的文献求助10
11秒前
Bazinga完成签到,获得积分10
12秒前
冷冷发布了新的文献求助10
12秒前
箐233完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809