Dual Cross-Attention for medical image segmentation

计算机科学 编码器 分割 人工智能 频道(广播) 冗余(工程) 图像分割 模式识别(心理学) 计算机视觉 计算机网络 操作系统
作者
Gorkem Can Ates,Prasoon P. Mohan,Emrah Çelik
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107139-107139 被引量:136
标识
DOI:10.1016/j.engappai.2023.107139
摘要

We propose Dual Cross-Attention (DCA), a simple yet effective attention module that enhances skip-connections in U-Net-based architectures for medical image segmentation. The plain and simple skip-connection scheme in U-Net-based architectures struggles with capturing the multi-scale context, resulting in a semantic gap between encoder and decoder features. Such a semantic gap causes redundancy between low and high-level features which ultimately limits the segmentation performance. In this paper, we address this issue by sequentially capturing channel and spatial dependencies across multi-scale encoder features that adaptively combine low and high-level features in various scales to effectively bridge the semantic gap. First, the Channel Cross-Attention (CCA) extracts global channel-wise dependencies by utilizing cross-attention across channel tokens of multi-scale encoder features. Then, the Spatial Cross-Attention (SCA) module performs cross-attention to capture spatial dependencies across spatial tokens. Finally, these fine-grained encoder features are up-sampled and connected to their corresponding decoder parts to form the skip-connection scheme. Our proposed DCA module can be integrated into any encoder–decoder architecture with skip-connections such as U-Net and its variants as well as advanced architectures based on vision transformers. The experimental results using six medical image segmentation datasets demonstrate that our DCA module can consistently improve the overall segmentation performance at a slight parameter increase. Our codes are available at: https://github.com/gorkemcanates/Dual-Cross-Attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助易头鱼鱼采纳,获得10
1秒前
李爱国应助美好斓采纳,获得10
1秒前
孔蓓蓓发布了新的文献求助20
1秒前
chengzi完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助50
2秒前
陈阳发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
小马甲应助温暖采纳,获得10
3秒前
善学以致用应助123采纳,获得10
3秒前
hanfo发布了新的文献求助10
4秒前
4秒前
4秒前
ding应助哈雷彗星采纳,获得10
4秒前
慕青应助Riggle G采纳,获得10
4秒前
FashionBoy应助缓慢钢笔采纳,获得10
5秒前
凌灵翎完成签到,获得积分10
5秒前
无极微光应助健康的宛菡采纳,获得20
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
游戏那我可徐完成签到 ,获得积分10
7秒前
呆呆完成签到 ,获得积分10
8秒前
9秒前
9秒前
强健的缘郡完成签到,获得积分20
9秒前
Leone发布了新的文献求助10
9秒前
852应助等待书雪采纳,获得10
10秒前
ENH发布了新的文献求助10
10秒前
在水一方应助Riggle G采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
烟花应助Unfair采纳,获得10
11秒前
11秒前
12秒前
12秒前
香蕉觅云应助凌灵翎采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779