Text-Based Measure of Supply Chain Risk Exposure

供应链 业务 波动性(金融) 风险度量 库存(枪支) 风险管理 计量经济学 精算学 经济 财务 营销 机械工程 工程类 文件夹
作者
Di Wu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (7): 4781-4801 被引量:10
标识
DOI:10.1287/mnsc.2023.4927
摘要

Using textual analysis techniques, including seeded word embedding and bag-of-words-based content analysis, I develop a firm-level measure of supply chain risk exposure from a novel source of unstructured data—the discussion between managers and equity analysts on supply chain-related topics during firms’ quarterly earnings conference calls. I validate the measure by showing that (1) the measure exhibits intuitive variations over time and across firms, successfully capturing both routine and systematic supply chain risk events; and (2) the measure is about risk exposure, as it significantly correlates with realized and options-implied stock return volatility, even after controlling for well-known aggregate risk measures. I then demonstrate that the measure is specifically indicative of the supply chain component of risk exposure. (3) Consistent with theoretical predictions, firms facing higher supply chain risks have higher inventory buffers, particularly in raw materials and intermediate inputs, increased cash holdings in lieu of investments, and significantly lower trade credit received from suppliers. Moreover, (4) during unexpected risk episodes, such as the Tohoku earthquake, firms with higher ex ante risk exposure have worse operating and financial performance. These results indicate that the text-based measure provides a credible quantification of firm-level exposure to supply chain risks and can thus be reliably utilized as outcome or explanatory variables in empirical supply chain research. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4927 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助mimi采纳,获得10
1秒前
bowler完成签到,获得积分10
2秒前
天才小能喵完成签到 ,获得积分0
2秒前
3秒前
笨笨歌曲发布了新的文献求助10
6秒前
芝士土拨鼠完成签到,获得积分10
7秒前
红鲤完成签到,获得积分10
7秒前
白鸽应助stop here采纳,获得10
8秒前
李健应助凤凤采纳,获得10
9秒前
9秒前
麟儿完成签到,获得积分20
10秒前
文静芸遥发布了新的文献求助10
10秒前
10秒前
lixiao完成签到,获得积分10
10秒前
11秒前
莫西莫西关注了科研通微信公众号
13秒前
Twikky完成签到,获得积分10
14秒前
鑫博发布了新的文献求助10
14秒前
15秒前
15秒前
桐桐应助暴龙战士图图采纳,获得10
15秒前
小小水完成签到,获得积分10
15秒前
科研靓仔发布了新的文献求助10
15秒前
LL发布了新的文献求助10
16秒前
建安发布了新的文献求助10
16秒前
16秒前
applelpypies完成签到 ,获得积分10
17秒前
鲨鱼完成签到,获得积分10
17秒前
小二郎应助chlorine采纳,获得10
17秒前
遂安完成签到,获得积分10
18秒前
踏实的鸽子完成签到,获得积分10
19秒前
yyds完成签到,获得积分10
19秒前
a龙完成签到,获得积分10
19秒前
浅夏发布了新的文献求助10
20秒前
杨杨完成签到 ,获得积分10
22秒前
十万八千完成签到,获得积分10
23秒前
米共完成签到 ,获得积分10
23秒前
科研通AI2S应助英勇羿采纳,获得10
23秒前
哆啦顺利毕业完成签到 ,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023