亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data

基因组 计算生物学 抗生素 抗药性 多重耐药 抗生素耐药性 头孢菌素 鉴定(生物学) 生物 基因 机器学习 人工智能 遗传学 计算机科学 生态学
作者
Rohit Roy Chowdhury,Jesmita Dhar,Stephy Mol Robinson,Abhishake Lahiri,Kausik Basak,Sandip Paul,Rachana Banerjee
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107629-107629 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107629
摘要

Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 ± 0.0747 and recall of 0.8197 ± 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 ± 0.0540 and 0.8620 ± 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 ± 0.0669 and 0.7737 ± 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. “Carbapenem; cephalosporin; penam”, “cephalosporin”, “cephamycin”, “cephalosporin; monobactam; penam; penem”, and “fluoroquinolone” were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
sunstar完成签到,获得积分10
9秒前
9秒前
悲凉的忆南完成签到,获得积分10
13秒前
yxl完成签到,获得积分10
16秒前
钟哈哈完成签到,获得积分10
20秒前
可耐的盈完成签到,获得积分10
23秒前
绿毛水怪完成签到,获得积分10
26秒前
lsc完成签到,获得积分10
30秒前
33秒前
小fei完成签到,获得积分10
33秒前
麻辣薯条完成签到,获得积分10
37秒前
40秒前
时尚身影完成签到,获得积分10
40秒前
流苏完成签到,获得积分10
44秒前
研友_ZAxxjn发布了新的文献求助20
44秒前
流苏2完成签到,获得积分10
47秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
wangjun完成签到,获得积分10
49秒前
54秒前
Aroojshams完成签到,获得积分10
55秒前
友好的巧凡完成签到,获得积分10
1分钟前
刘瑞吉完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
WANWAN发布了新的文献求助10
1分钟前
小情绪完成签到 ,获得积分10
1分钟前
土壤情缘发布了新的文献求助10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
WANWAN完成签到,获得积分20
1分钟前
土壤情缘完成签到,获得积分10
1分钟前
1分钟前
阿芜完成签到,获得积分10
1分钟前
榴莲牛奶瓶应助阿芜采纳,获得10
1分钟前
科研通AI6应助yzzzz采纳,获得10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
Amelia完成签到 ,获得积分10
1分钟前
1分钟前
莫听南发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418313
求助须知:如何正确求助?哪些是违规求助? 4534003
关于积分的说明 14142967
捐赠科研通 4450296
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432891
关于科研通互助平台的介绍 1410244