MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data

基因组 计算生物学 抗生素 抗药性 多重耐药 抗生素耐药性 头孢菌素 鉴定(生物学) 生物 基因 机器学习 人工智能 遗传学 计算机科学 生态学
作者
Rohit Roy Chowdhury,Jesmita Dhar,Stephy Mol Robinson,Abhishake Lahiri,Kausik Basak,Sandip Paul,Rachana Banerjee
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107629-107629 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107629
摘要

Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 ± 0.0747 and recall of 0.8197 ± 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 ± 0.0540 and 0.8620 ± 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 ± 0.0669 and 0.7737 ± 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. “Carbapenem; cephalosporin; penam”, “cephalosporin”, “cephamycin”, “cephalosporin; monobactam; penam; penem”, and “fluoroquinolone” were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助香蕉寒梅采纳,获得10
刚刚
初空月儿发布了新的文献求助10
刚刚
1秒前
Dester发布了新的文献求助60
1秒前
youlinn发布了新的文献求助30
1秒前
酷炫的幻丝完成签到 ,获得积分10
1秒前
2秒前
泽锦臻发布了新的文献求助10
3秒前
Koalas应助优雅麦片采纳,获得20
3秒前
专注乐荷发布了新的文献求助10
3秒前
浮游应助MutantKitten采纳,获得10
5秒前
马马完成签到 ,获得积分10
6秒前
6秒前
布图格其完成签到,获得积分10
7秒前
晴天完成签到 ,获得积分10
7秒前
LLL发布了新的文献求助10
9秒前
10秒前
10秒前
丘比特应助LYYYY采纳,获得10
11秒前
12秒前
感冒药发布了新的文献求助10
16秒前
Hello应助benhzh采纳,获得10
16秒前
16秒前
17秒前
narcol发布了新的文献求助30
17秒前
Lucas应助LLL采纳,获得10
18秒前
边快乐9296完成签到,获得积分10
22秒前
Esther发布了新的文献求助50
22秒前
26秒前
31秒前
33秒前
Dester驳回了Akim应助
33秒前
33秒前
香蕉寒梅发布了新的文献求助10
33秒前
Zzz发布了新的文献求助10
33秒前
pilgrim应助晨曦采纳,获得10
33秒前
han123123发布了新的文献求助10
34秒前
36秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720