MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data

基因组 计算生物学 抗生素 抗药性 多重耐药 抗生素耐药性 头孢菌素 鉴定(生物学) 生物 基因 机器学习 人工智能 遗传学 计算机科学 生态学
作者
Rohit Roy Chowdhury,Jesmita Dhar,Stephy Mol Robinson,Abhishake Lahiri,Kausik Basak,Sandip Paul,Rachana Banerjee
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107629-107629 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107629
摘要

Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 ± 0.0747 and recall of 0.8197 ± 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 ± 0.0540 and 0.8620 ± 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 ± 0.0669 and 0.7737 ± 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. “Carbapenem; cephalosporin; penam”, “cephalosporin”, “cephamycin”, “cephalosporin; monobactam; penam; penem”, and “fluoroquinolone” were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
avalanche应助科研通管家采纳,获得50
刚刚
可爱的函函应助木木采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
积极的罡完成签到 ,获得积分10
1秒前
合适猫咪完成签到,获得积分10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
Aaron567应助科研通管家采纳,获得30
1秒前
zh发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
包容煎饼发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Ian_Zhang应助科研通管家采纳,获得10
2秒前
2秒前
Ian_Zhang应助科研通管家采纳,获得10
2秒前
natmed应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
小杭76应助wanna采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406763
求助须知:如何正确求助?哪些是违规求助? 4524486
关于积分的说明 14098816
捐赠科研通 4438353
什么是DOI,文献DOI怎么找? 2436203
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340