已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data

基因组 计算生物学 抗生素 抗药性 多重耐药 抗生素耐药性 头孢菌素 鉴定(生物学) 生物 基因 机器学习 遗传学 计算机科学 生态学
作者
Rohit Roy Chowdhury,Jesmita Dhar,Stephy Mol Robinson,Abhishake Lahiri,Kausik Basak,Sandip Paul,Rachana Banerjee
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107629-107629
标识
DOI:10.1016/j.compbiomed.2023.107629
摘要

Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 ± 0.0747 and recall of 0.8197 ± 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 ± 0.0540 and 0.8620 ± 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 ± 0.0669 and 0.7737 ± 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. “Carbapenem; cephalosporin; penam”, “cephalosporin”, “cephamycin”, “cephalosporin; monobactam; penam; penem”, and “fluoroquinolone” were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到 ,获得积分10
3秒前
cecilycen完成签到,获得积分10
6秒前
WQS完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
过时的哑铃应助青柠檬采纳,获得10
8秒前
开心的野狼完成签到 ,获得积分10
10秒前
乐乐应助周游采纳,获得10
10秒前
Happy完成签到 ,获得积分10
15秒前
22秒前
24秒前
NexusExplorer应助吃面不加醋采纳,获得10
24秒前
瓜兵是官爷完成签到,获得积分10
25秒前
Slhy完成签到 ,获得积分10
25秒前
周游发布了新的文献求助10
27秒前
柯一一应助科研通管家采纳,获得10
27秒前
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
柯一一应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
27秒前
柯一一应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
28秒前
柯一一应助科研通管家采纳,获得10
28秒前
FIN应助科研通管家采纳,获得10
28秒前
柯一一应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
28秒前
琪凯定理完成签到,获得积分10
29秒前
29秒前
超级臻发布了新的文献求助10
32秒前
8531发布了新的文献求助10
32秒前
阳光衣发布了新的文献求助10
34秒前
Crw__完成签到,获得积分10
42秒前
Chillym完成签到 ,获得积分10
43秒前
殷启维发布了新的文献求助10
45秒前
学术笨蛋发布了新的文献求助10
47秒前
悦耳天曼完成签到,获得积分10
47秒前
无花果应助张三采纳,获得10
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024