基因组
计算生物学
抗生素
抗药性
多重耐药
抗生素耐药性
头孢菌素
鉴定(生物学)
生物
基因
机器学习
遗传学
计算机科学
生态学
作者
Rohit Roy Chowdhury,Jesmita Dhar,Stephy Mol Robinson,Abhishake Lahiri,Kausik Basak,Sandip Paul,Rachana Banerjee
标识
DOI:10.1016/j.compbiomed.2023.107629
摘要
Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 ± 0.0747 and recall of 0.8197 ± 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 ± 0.0540 and 0.8620 ± 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 ± 0.0669 and 0.7737 ± 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. “Carbapenem; cephalosporin; penam”, “cephalosporin”, “cephamycin”, “cephalosporin; monobactam; penam; penem”, and “fluoroquinolone” were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI