已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

When cool hospitality brand meets AI: exploring the matching effect of service agents and brand images on brand attitude

款待 适度 品牌管理 服务(商务) 品牌知名度 营销 广告 感觉 酒店业 匹配(统计) 业务 心理学 独创性 品牌资产 社会心理学 旅游 政治学 数学 统计 创造力 法学
作者
Yun Liu,Xingyuan Wang,Heyu Qin
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald (MCB UP)]
卷期号:36 (7): 2367-2384 被引量:6
标识
DOI:10.1108/ijchm-04-2023-0516
摘要

Purpose This paper aims to explore the matching effect of hospitality brand image (cool vs non-cool) and service agents (Artificial intelligence [AI] vs human staff) on brand attitude, with a focus on assessing the role of feeling right as a mediator and service failure as a moderator. Design/methodology/approach This paper tested the hypotheses through three experiments and a Supplementary Material experiment, which collectively involved 835 participants. Findings The results indicated that the adoption of AI by cool brands can foster the right feeling and enhance consumers’ positive brand attitudes. In contrast, employing human staff did not lead to improved brand attitudes toward non-cool brands. Furthermore, the study found that service failure moderated the matching effect between service agents and cool brand images on brand attitude. The matching effect was observed under successful service conditions, but it disappeared when service failure occurred. Practical implications The findings offer practical guidance for hospitality companies in choosing service agents based on brand image. Cool brands can swiftly transition to AI, reinforcing their modern, cutting-edge image. Traditional brands may delay AI adoption or integrate it strategically with human staff. Originality/value To the best of the authors’ knowledge, this paper represents one of the first studies to address the issue of selecting the optimal service agent based on hospitality brand image. More importantly, it introduces the concept of a cool hospitality brand image as a boundary condition in the framework of AI research, providing novel insights into consumers’ ambivalent responses to AI observed in previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CXE发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
sky完成签到 ,获得积分10
11秒前
YH2完成签到,获得积分10
11秒前
剑八发布了新的文献求助10
13秒前
14秒前
111发布了新的文献求助10
15秒前
16秒前
16秒前
Migue应助剑八采纳,获得10
18秒前
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
MROU应助科研通管家采纳,获得10
19秒前
20秒前
隔壁小黄完成签到 ,获得积分10
20秒前
肖智议发布了新的文献求助10
21秒前
CXE完成签到,获得积分10
22秒前
27秒前
JamesPei应助肖智议采纳,获得10
27秒前
AAAADiao完成签到 ,获得积分10
36秒前
37秒前
机灵的以旋完成签到,获得积分20
38秒前
徐勇完成签到 ,获得积分10
41秒前
张同学快去做实验呀完成签到,获得积分10
52秒前
111完成签到 ,获得积分10
54秒前
pojian完成签到,获得积分10
57秒前
小刘完成签到,获得积分10
59秒前
Fn完成签到 ,获得积分10
59秒前
和谐续完成签到 ,获得积分10
1分钟前
MROU完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
生信精准科研完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
香蕉觅云应助冰糖雪梨采纳,获得10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335213
求助须知:如何正确求助?哪些是违规求助? 2964446
关于积分的说明 8613702
捐赠科研通 2643316
什么是DOI,文献DOI怎么找? 1447277
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658948