Microfluidic Chip-Based Modeling of Three-Dimensional Intestine–Vessel–Liver Interactions in Fluorotelomer Alcohol Biotransformation

化学 生物转化 代谢物 毒物动力学 体内 生物累积 药物代谢 生物物理学 细胞生物学 生物化学 新陈代谢 环境化学 生物 生物技术
作者
Ning Xu,Haifeng Lin,Jin‐Ming Lin,Jie Cheng,Peilong Wang,Ling Lin
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (46): 17064-17072 被引量:3
标识
DOI:10.1021/acs.analchem.3c03892
摘要

Plyfluoroalkyl substance (PFAS), featured with incredible persistence and chronic toxicity, poses an emerging ecological and environmental crisis. Although significant progress has been made in PFAS metabolism in vivo, the underlying mechanism of metabolically active organ interactions in PFAS bioaccumulation remains largely unknown. We developed a microfluidic-based assay to recreate the intestine–vessel–liver interface in three dimensions, allowing for high-resolution, real-time images and precise quantification of intestine–vessel–liver interactions in PFAS biotransformation. In contrast to the scattered arrangement of vascular endothelium on the traditional d-polylysine-modified two-dimensional (2D) plate, the microtubules in our three-dimensional (3D) platform formed a dense honeycomb network through the ECM, with longer tubular structures. Additionally, the slope culture of epithelial cells in our platform exhibited a closely arranged and thicker cell layer than the planar culture. To dynamically monitor the metabolic crosstalk in the intestinal–vascular endothelium–liver interaction under exposure to fluorotelomer alcohols (FTOHs), we combined the chip with a solid-phase extraction-mass spectrometry (SPE-MS) system. Our findings revealed that endothelial cells were involved in the metabolic process of FTOHs. The transformation of intestinal epithelial and hepatic epithelial cells produces toxic metabolite fluorotelomer carboxylic acids (FTCAs), which circulate to endothelial cells and affect angiogenesis. This system shows promise as an enhanced surrogate model and platform for studying pollutant exposure as well as for biomedical and pharmaceutical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田田完成签到,获得积分10
2秒前
2秒前
hugo发布了新的文献求助10
4秒前
努力看文献的大头完成签到,获得积分10
5秒前
5秒前
cm发布了新的文献求助10
5秒前
jdjakdjaslk完成签到,获得积分10
6秒前
默默的巧荷完成签到,获得积分10
7秒前
7秒前
聪明牛排发布了新的文献求助10
7秒前
8秒前
英姑应助ark861023采纳,获得10
8秒前
ding应助烂漫的白梦采纳,获得10
8秒前
9秒前
10秒前
12秒前
苹果向露发布了新的文献求助10
12秒前
巡音幻夜完成签到,获得积分10
12秒前
sam发布了新的文献求助10
14秒前
15秒前
冷静博超给pufanlg的求助进行了留言
16秒前
虚心咖啡发布了新的文献求助10
17秒前
华仔应助FG采纳,获得10
17秒前
Wilddeer完成签到 ,获得积分10
17秒前
xx完成签到 ,获得积分10
18秒前
liu bo完成签到,获得积分10
19秒前
19秒前
hugo发布了新的文献求助10
20秒前
22秒前
sam关注了科研通微信公众号
25秒前
momomomo123完成签到,获得积分10
25秒前
诸葛半雪发布了新的文献求助10
25秒前
纪星星完成签到 ,获得积分10
26秒前
czz014完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
蒸鸡爪配乌龙茶完成签到,获得积分10
29秒前
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012