A deep learning model for generating fundus autofluorescence images from color fundus photography

人工智能 眼底(子宫) 深度学习 计算机科学 眼底摄影 模式识别(心理学) 计算机视觉 医学 眼科 视网膜 荧光血管造影
作者
Song Fan,Weiyi Zhang,Yingfeng Zheng,Danli Shi,Mingguang He
出处
期刊:Advances in ophthalmology practice and research [Elsevier]
卷期号:3 (4): 192-198 被引量:6
标识
DOI:10.1016/j.aopr.2023.11.001
摘要

Fundus Autofluorescence (FAF) is a valuable imaging technique used to assess metabolic alterations in the retinal pigment epithelium (RPE) associated with various age-related and disease-related changes. The practical uses of FAF are ever-growing. This study aimed to evaluate the effectiveness of a generative deep learning (DL) model in translating color fundus (CF) images into synthetic FAF images and explore its potential for enhancing screening of age-related macular degeneration (AMD). . A generative adversarial network (GAN) model was trained on pairs of CF and FAF images to generate synthetic FAF images. The quality of synthesized FAF images was assessed objectively by common generation metrics. Additionally, the clinical effectiveness of the generated FAF images in AMD classification was evaluated by measuring the area under the curve (AUC), using the LabelMe dataset. A total of 8410 FAF images from 2586 patients were analyzed. The synthesized FAF images exhibited an impressive objectively assessed quality, achieving a multi-scale structural similarity index (MS-SSIM) of 0.67. When evaluated on the LabelMe dataset, the combination of generated FAF images and CF images resulted in a noteworthy improvement in AMD classification accuracy, with the AUC increasing from 0.931 to 0.968. This study presents the first attempt to use a generative deep learning model to create authentic and high-quality FAF images from CF images. The incorporation of the translated FAF images on top of CF images improved the accuracy of AMD classification. Overall, this study presents a promising approach to enhance large-scale AMD screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xw完成签到,获得积分10
1秒前
桐桐应助眼睛大以寒采纳,获得10
1秒前
2秒前
兼听则明应助淡然白安采纳,获得30
3秒前
3秒前
4秒前
黑暗系发布了新的文献求助10
4秒前
5秒前
Dr.miao完成签到,获得积分10
5秒前
12Yohann完成签到,获得积分10
6秒前
落寞觅山完成签到 ,获得积分20
6秒前
枫尽完成签到,获得积分10
6秒前
董浩发布了新的文献求助10
7秒前
jin发布了新的文献求助10
7秒前
Owen应助benhzh采纳,获得10
7秒前
7秒前
ZZZ发布了新的文献求助50
7秒前
8秒前
大爷完成签到 ,获得积分10
9秒前
10秒前
uuu发布了新的文献求助10
10秒前
白泽发布了新的文献求助10
10秒前
花城完成签到,获得积分10
10秒前
未来可期发布了新的文献求助10
10秒前
JamesPei应助贺万万采纳,获得10
10秒前
11秒前
传奇3应助Ambition采纳,获得10
11秒前
科研通AI2S应助Anastasia采纳,获得10
11秒前
12秒前
天真初蝶发布了新的文献求助10
12秒前
NexusExplorer应助文天采纳,获得10
13秒前
13秒前
14秒前
wangnn发布了新的文献求助20
14秒前
啊咧发布了新的文献求助10
14秒前
Ava应助标致的问晴采纳,获得30
15秒前
良辰应助幸福大白采纳,获得10
15秒前
干净的秋柳完成签到,获得积分10
15秒前
ll完成签到,获得积分10
16秒前
zhttty发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543673
求助须知:如何正确求助?哪些是违规求助? 3121002
关于积分的说明 9345096
捐赠科研通 2819038
什么是DOI,文献DOI怎么找? 1549916
邀请新用户注册赠送积分活动 722318
科研通“疑难数据库(出版商)”最低求助积分说明 713137