MMHTSR: In-Air Handwriting Trajectory Sensing and Reconstruction Based on mmWave Radar

计算机科学 人工智能 笔迹 雷达跟踪器 雷达 弹道 电信 天文 物理
作者
Qin Chen,Zongyong Cui,Zheng Zhou,Yu Tian,Zongjie Cao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 10069-10083 被引量:14
标识
DOI:10.1109/jiot.2023.3325258
摘要

In-air handwriting necessitates consistent motion tracking, in contrast to millimeter-wave (mmWave) radar-based simple gesture recognition techniques. However, during long-duration gesture tracking, challenges, such as body motion interference and environmental clutter, become more pressing. Moreover, due to the lack of a supporting surface in in-air handwriting, slight arm tremors also can result in unsmooth trajectories. To address these challenges, this article proposes a two-stage processing framework called MMHTSR. In the first stage, the state-space equations are reestablished, and a locally correlated 2-D Gaussian process regression (GPR) algorithm is employed for interframe prediction. By incorporating uncertainty estimation, weights are assigned to the next frame data, effectively suppressing interference from nongestural targets. In the second stage, real-time smoothing and tracking of gesture trajectories are accomplished using a Kalman filter, followed by mapping the trajectories onto the Cartesian coordinate system. Finally, an end-to-end signal processing framework is deployed on a low-cost 60-GHz mmWave radar prototype, and gesture trajectory recognition is achieved using deep learning methods. Experimental results demonstrate that MMHTSR can accurately track motion gestures within the range of approximately 5–40 cm and successfully recognize 30 classes of in-air gesture trajectories, including uppercase letters A–Z and four interactive gesture actions. Furthermore, the proposed framework exhibits robust performance across various scenarios which shows its adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WROBTY发布了新的文献求助10
1秒前
1秒前
3秒前
5秒前
zzzzz关注了科研通微信公众号
5秒前
动听紫文发布了新的文献求助50
5秒前
ZJX应助能干的寒凡采纳,获得10
7秒前
7秒前
kwai发布了新的文献求助30
8秒前
乐观伟诚发布了新的文献求助10
9秒前
暴走小面包完成签到,获得积分10
10秒前
汉堡包应助暖暖采纳,获得10
10秒前
YIYI完成签到,获得积分10
10秒前
Jaime完成签到,获得积分10
10秒前
ChenYX发布了新的文献求助30
11秒前
11秒前
下次一定完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
小李老博完成签到,获得积分10
15秒前
zzzzz发布了新的文献求助10
16秒前
CodeCraft应助傲娇以寒采纳,获得10
18秒前
伶俐乌发布了新的文献求助10
18秒前
鱼鱼色完成签到 ,获得积分10
19秒前
19秒前
19秒前
说话要严谨完成签到 ,获得积分10
19秒前
yuanying发布了新的文献求助10
20秒前
贝贝发布了新的文献求助20
20秒前
暖暖完成签到,获得积分20
20秒前
22秒前
22秒前
23秒前
24秒前
24秒前
24秒前
24秒前
枫叶随想应助一杯冰美式采纳,获得10
25秒前
健忘怜雪发布了新的文献求助30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658