已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MMHTSR: In-Air Handwriting Trajectory Sensing and Reconstruction Based on mmWave Radar

计算机科学 人工智能 笔迹 雷达跟踪器 雷达 弹道 电信 天文 物理
作者
Qin Chen,Zongyong Cui,Zheng Zhou,Yu Tian,Zongjie Cao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 10069-10083 被引量:14
标识
DOI:10.1109/jiot.2023.3325258
摘要

In-air handwriting necessitates consistent motion tracking, in contrast to millimeter-wave (mmWave) radar-based simple gesture recognition techniques. However, during long-duration gesture tracking, challenges, such as body motion interference and environmental clutter, become more pressing. Moreover, due to the lack of a supporting surface in in-air handwriting, slight arm tremors also can result in unsmooth trajectories. To address these challenges, this article proposes a two-stage processing framework called MMHTSR. In the first stage, the state-space equations are reestablished, and a locally correlated 2-D Gaussian process regression (GPR) algorithm is employed for interframe prediction. By incorporating uncertainty estimation, weights are assigned to the next frame data, effectively suppressing interference from nongestural targets. In the second stage, real-time smoothing and tracking of gesture trajectories are accomplished using a Kalman filter, followed by mapping the trajectories onto the Cartesian coordinate system. Finally, an end-to-end signal processing framework is deployed on a low-cost 60-GHz mmWave radar prototype, and gesture trajectory recognition is achieved using deep learning methods. Experimental results demonstrate that MMHTSR can accurately track motion gestures within the range of approximately 5–40 cm and successfully recognize 30 classes of in-air gesture trajectories, including uppercase letters A–Z and four interactive gesture actions. Furthermore, the proposed framework exhibits robust performance across various scenarios which shows its adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy发布了新的文献求助10
1秒前
2秒前
hancahngxiao发布了新的文献求助10
6秒前
6秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
语行完成签到 ,获得积分10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
VDC应助6666采纳,获得30
8秒前
www完成签到 ,获得积分10
8秒前
mmyhn发布了新的文献求助10
12秒前
田様应助13采纳,获得10
14秒前
xiuxiuzhang完成签到 ,获得积分10
15秒前
18秒前
FashionBoy应助肯瑞恩哭哭采纳,获得10
18秒前
冷傲山彤发布了新的文献求助10
19秒前
开朗的雪珊完成签到,获得积分10
19秒前
吴迪发布了新的文献求助10
20秒前
郑麻发布了新的文献求助10
22秒前
22秒前
23秒前
深情安青应助不淄采纳,获得10
23秒前
24秒前
梅狸猫不读博完成签到 ,获得积分10
25秒前
25秒前
默默襄完成签到 ,获得积分10
26秒前
情怀应助小虎牙采纳,获得10
26秒前
陆负剑发布了新的文献求助10
26秒前
Wilson发布了新的文献求助10
28秒前
13完成签到,获得积分10
29秒前
29秒前
30秒前
无情的rr完成签到 ,获得积分10
31秒前
32秒前
Hillson完成签到,获得积分10
32秒前
Wilson完成签到,获得积分10
33秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576