亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computing the relative binding affinity of ligands based on a pairwise binding comparison network

标杆管理 成对比较 排名(信息检索) 计算机科学 图形 接口(物质) 理论计算机科学 机器学习 人工智能 最大气泡压力法 业务 气泡 营销 并行计算
作者
Jie Yu,Zhaojun Li,Geng Chen,Xiangtai Kong,Jie Hu,Dingyan Wang,Duanhua Cao,Yanbei Li,Ruifeng Huo,Gang Wang,Xiaohong Liu,Hualiang Jiang,Xutong Li,Xiaomin Luo,Mingyue Zheng
出处
期刊:Nature Computational Science [Springer Nature]
卷期号:3 (10): 860-872 被引量:10
标识
DOI:10.1038/s43588-023-00529-9
摘要

Abstract Structure-based lead optimization is an open challenge in drug discovery, which is still largely driven by hypotheses and depends on the experience of medicinal chemists. Here we propose a pairwise binding comparison network (PBCNet) based on a physics-informed graph attention mechanism, specifically tailored for ranking the relative binding affinity among congeneric ligands. Benchmarking on two held-out sets (provided by Schrödinger and Merck) containing over 460 ligands and 16 targets, PBCNet demonstrated substantial advantages in terms of both prediction accuracy and computational efficiency. Equipped with a fine-tuning operation, the performance of PBCNet reaches that of Schrödinger’s FEP+, which is much more computationally intensive and requires substantial expert intervention. A further simulation-based experiment showed that active learning-optimized PBCNet may accelerate lead optimization campaigns by 473%. Finally, for the convenience of users, a web service for PBCNet is established to facilitate complex relative binding affinity prediction through an easy-to-operate graphical interface.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luis应助科研通管家采纳,获得30
35秒前
gszy1975完成签到,获得积分10
47秒前
互助举报Summer2022求助涉嫌违规
50秒前
Rebeccaiscute完成签到 ,获得积分10
1分钟前
Iron_five完成签到 ,获得积分0
1分钟前
2分钟前
nikg发布了新的文献求助10
2分钟前
诗梦完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
青葱鱼块完成签到 ,获得积分10
2分钟前
3分钟前
以七完成签到 ,获得积分10
3分钟前
sdkabdrxt完成签到,获得积分10
3分钟前
3分钟前
krajicek发布了新的文献求助10
4分钟前
4分钟前
闪闪沂完成签到 ,获得积分10
4分钟前
科研通AI6.2应助刻苦不弱采纳,获得10
5分钟前
5分钟前
小神仙完成签到 ,获得积分10
5分钟前
5分钟前
Isaac完成签到 ,获得积分10
5分钟前
刻苦不弱发布了新的文献求助10
5分钟前
5分钟前
毛耳朵发布了新的文献求助10
6分钟前
yzy完成签到 ,获得积分10
6分钟前
互助应助毛耳朵采纳,获得10
6分钟前
乐乐应助毛耳朵采纳,获得10
6分钟前
NattyPoe发布了新的文献求助10
6分钟前
忧心的士萧完成签到,获得积分10
6分钟前
今后应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
夏天无完成签到 ,获得积分10
6分钟前
Cloud发布了新的文献求助10
6分钟前
7分钟前
gkhsdvkb发布了新的文献求助10
7分钟前
yin景景完成签到,获得积分10
7分钟前
科研通AI6.2应助开霁采纳,获得10
7分钟前
李健的小迷弟应助颖颖采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870851
求助须知:如何正确求助?哪些是违规求助? 6468547
关于积分的说明 15665078
捐赠科研通 4987083
什么是DOI,文献DOI怎么找? 2689159
邀请新用户注册赠送积分活动 1631508
关于科研通互助平台的介绍 1589536