正交晶系
材料科学
格子(音乐)
插层(化学)
电解质
结构稳定性
外延
电极
异质结
凝聚态物理
晶体结构
结晶学
纳米技术
光电子学
化学
无机化学
物理化学
结构工程
物理
工程类
声学
图层(电子)
作者
Shuo Sun,Zhen Han,Wei Liu,Qiuying Xia,Liang Xue,Xincheng Lei,Teng Zhai,Dong Su,Hui Xia
标识
DOI:10.1038/s41467-023-42335-x
摘要
Abstract Large lattice expansion/contraction with Li + intercalation/deintercalation of electrode active materials results in severe structural degradation to electrodes and can negatively impact the cycle life of solid-state lithium-based batteries. In case of the layered orthorhombic MoO 3 (α-MoO 3 ), its large lattice variation along the b axis during Li + insertion/extraction induces irreversible phase transition and structural degradation, leading to undesirable cycle life. Herein, we propose a lattice pinning strategy to construct a coherent interface between α-MoO 3 and η-Mo 4 O 11 with epitaxial intergrowth structure. Owing to the minimal lattice change of η-Mo 4 O 11 during Li + insertion/extraction, η-Mo 4 O 11 domains serve as pin centers that can effectively suppress the lattice expansion of α-MoO 3 , evidenced by the noticeably decreased lattice expansion from about 16% to 2% along the b direction. The designed α-MoO 3 /η-Mo 4 O 11 intergrown heterostructure enables robust structural stability during cycling (about 81% capacity retention after 3000 cycles at a specific current of 2 A g −1 and 298 ± 2 K) by harnessing the merits of epitaxial stabilization and the pinning effect. Finally, benefiting from the stable positive electrode–solid electrolyte interface, a highly durable and flexible all-solid-state thin-film lithium microbattery is further demonstrated. This work advances the fundamental understanding of the unstable structure evolution for α-MoO 3 , and may offer a rational strategy to develop highly stable electrode materials for advanced batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI