化学
氢键
配体(生物化学)
超分子化学
催化作用
基质(水族馆)
活动站点
组合化学
氢胺化
立体化学
结晶学
分子
有机化学
晶体结构
生物化学
海洋学
受体
地质学
作者
Sebastian Acosta-Calle,Elsa Huebsch,Scott Kolmar,Matthew T. Whited,Chun-Hsing Chen,Alexander J. M. Miller
标识
DOI:10.26434/chemrxiv-2023-rhxzk
摘要
Hydrogen bonding networks are ubiquitous in biological systems and play a key role in controlling the conformational dynamics and allosteric interactions of enzymes. Yet in small organometallic catalysts, hydrogen bonding rarely controls ligand binding to the metal center. In this work, a hydrogen bonding network within a well-defined organometallic catalyst works in concert with cation-dipole interactions to gate substrate access to the active site. An ammine ligand acts as one cofactor, templating a hydrogen bonding network within a pendent crown ether in the secondary coordination sphere, an interaction which prevents the binding of nitriles to the nickel center. Sodium ions are a second cofactor, disrupting hydrogen bonding to enable ligand substitution reactions and substrate binding. Thermodynamic analyses provide insight into the energetic requirements of the different supramolecular interactions enabling substrate gating. Switchable ligand substitution and switchable hydroamination catalysis illustrate the dual cofactor approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI