Device physics recipe to make spiking neurons

计算机科学 生物系统 电阻抗 物理系统 状态变量 人工智能 拓扑(电路) 物理 电气工程 工程类 生物 量子力学 热力学
作者
Juan Bisquert
出处
期刊:Chemical physics reviews [American Institute of Physics]
卷期号:4 (3) 被引量:9
标识
DOI:10.1063/5.0145391
摘要

Neurons, which are made of biological tissue, exhibit cognitive properties that can be replicated in various material substrates. To create brain-inspired computational artificial systems, we can construct microscopic electronic neurons that mimic natural systems. In this paper, we discuss the essential material and device properties needed for a spiking neuron, which can be characterized using impedance spectroscopy and small perturbation equivalent circuit elements. We find that the minimal neuron system requires a capacitor, a chemical inductor, and a negative resistance. These components can be integrated naturally in the physical response of the device, instead of built from separate circuit elements. We identify the structural conditions for smooth oscillations that depend on certain dynamics of a conducting system with internal state variables. These state variables can be of diverse physical nature, such as properties of fluids, electronic solids, or ionic organic materials, implying that functional neurons can be built in various ways. We highlight the importance of detecting the Hopf bifurcation, a critical point in achieving spiking behavior, through spectral features of the impedance. To this end, we provide a systematic method of analysis in terms of the critical characteristic frequencies that can be obtained from impedance methods. Thus, we propose a methodology to quantify the physical and material properties of devices to produce the dynamic properties of neurons necessary for specific sensory-cognitive tasks. By replicating the essential properties of biological neurons in electronic systems, it may be possible to create brain-inspired computational systems with enhanced capabilities in information processing, pattern recognition, and learning. Additionally, understanding the physical and material properties of neurons can contribute to our knowledge of how biological neurons function and interact in complex neural networks. Overall, this paper presents a novel approach toward building brain-inspired artificial systems and provides insight into the important material and device considerations for achieving spiking behavior in electronic neurons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助安富厚采纳,获得10
刚刚
刚刚
温暖南莲完成签到,获得积分10
2秒前
熠迩发布了新的文献求助10
2秒前
Zhang完成签到,获得积分10
3秒前
天天快乐应助刘晏均采纳,获得10
4秒前
skkr发布了新的文献求助10
5秒前
温暖南莲发布了新的文献求助10
5秒前
叶子关注了科研通微信公众号
5秒前
5秒前
小凉完成签到 ,获得积分10
6秒前
8秒前
9秒前
CipherSage应助skkr采纳,获得10
9秒前
10秒前
12秒前
12秒前
12秒前
13秒前
脑洞疼应助12rcli采纳,获得30
13秒前
14秒前
miles发布了新的文献求助10
14秒前
李爱国应助holly采纳,获得10
15秒前
安富厚发布了新的文献求助10
16秒前
科研通AI2S应助瑞芬太尼采纳,获得10
16秒前
17秒前
刘晏均发布了新的文献求助10
17秒前
我是老大应助Dreamer采纳,获得10
17秒前
宋枝野完成签到 ,获得积分10
19秒前
在水一方应助Beckyyy采纳,获得10
20秒前
aa发布了新的文献求助10
22秒前
24秒前
24秒前
heart发布了新的文献求助30
25秒前
27秒前
刘晏均完成签到,获得积分10
27秒前
aa完成签到,获得积分10
28秒前
12rcli发布了新的文献求助30
29秒前
双黄应助jin采纳,获得20
29秒前
瑞芬太尼发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248499
求助须知:如何正确求助?哪些是违规求助? 2891839
关于积分的说明 8268971
捐赠科研通 2559871
什么是DOI,文献DOI怎么找? 1388724
科研通“疑难数据库(出版商)”最低求助积分说明 650815
邀请新用户注册赠送积分活动 627782