已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Survey on multimodal approaches to emotion recognition

模式 计算机科学 本能 过程(计算) 情绪识别 模态(人机交互) 领域(数学) 情绪分析 情感计算 情感科学 认知心理学 人工智能 情绪分类 心理学 社会科学 进化生物学 生物 数学 操作系统 社会学 纯数学
作者
Aruna Gladys A.,V. Vetriselvi
出处
期刊:Neurocomputing [Elsevier]
卷期号:556: 126693-126693 被引量:9
标识
DOI:10.1016/j.neucom.2023.126693
摘要

Emotion is an instinctive state of mind created by the neurophysiological changes occurring in the human body as reactions to various internal or external stimuli. Emotions play a vital role in decision-making. The choices one makes in day-to-day life determine their behaviour and thus their character. Emotion and behaviour recognition are the key processes in ascertaining Emotional Intelligence (EQ) which is the inherent human potential to understand and manage one's own emotions in positive ways. But the process requires high expertise in the field of psychology and is exhaustive and time-consuming. This has opened a new horizon for exploring the computational recognition of EQ. Emotion Recognition (ER) is one of its sub-processes that identifies various human emotional states. Emotions are detected from physiological signals and also through non-invasive, vision-based algorithms by exploiting video and audio modalities. With the emergence of big data and state-of-art deep learning architectures combined with the vast availability of emotion-rich video content from various streaming platforms, Multimodal Emotion Recognition (MER) which detects emotions through multiple and complementary input modalities from video has gathered momentum in recent years. This survey paper elaborately discusses the unimodal ER through visual, auditory, and linguistic modalities and reviews MER with combined features from these modalities. It also discusses the joint representations and fusion mechanisms used to acquire the intermodal correlations. Finally, we put forward the limitations and gaps identified in the literature along with a few suggestions for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juziyaya应助emotional采纳,获得10
刚刚
啾啾zZ完成签到 ,获得积分10
1秒前
3秒前
小星星完成签到,获得积分10
4秒前
4秒前
zhou完成签到,获得积分10
5秒前
qmx发布了新的文献求助10
7秒前
健康的筝完成签到 ,获得积分10
11秒前
11秒前
面包完成签到 ,获得积分10
13秒前
13秒前
子非木雨完成签到,获得积分10
14秒前
16秒前
17秒前
18秒前
18秒前
小二郎应助畅快的香菱采纳,获得10
20秒前
21秒前
dong发布了新的文献求助10
22秒前
FashionBoy应助缓慢的灵枫采纳,获得10
23秒前
Elma发布了新的文献求助10
25秒前
25秒前
25秒前
zho驳回了Akim应助
27秒前
山水之乐发布了新的文献求助10
27秒前
emotional完成签到,获得积分10
27秒前
28秒前
29秒前
blah完成签到 ,获得积分10
31秒前
31秒前
CodeCraft应助殷勤柠檬采纳,获得10
32秒前
从容芮应助123木头人采纳,获得10
32秒前
34秒前
blah关注了科研通微信公众号
34秒前
1111发布了新的文献求助20
36秒前
asl完成签到 ,获得积分10
37秒前
39秒前
End发布了新的文献求助10
40秒前
lzt完成签到 ,获得积分10
40秒前
40秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142265
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805849
捐赠科研通 2449486
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601291