Thermally developing combined electroosmotic and pressure-driven flow of Phan–Thien–Tanner fluids in a microchannel

机械 热力学 微通道 传热 Péclet编号 物理 牛顿流体 剪切速率 压力梯度 粘度
作者
Tripti Kumbalpuri,Sandip Sarkar
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (8) 被引量:4
标识
DOI:10.1063/5.0166296
摘要

We present semi-analytical solutions for the hydrodynamically developed and thermally developing flow of a non-Newtonian fluid through an isothermal rectangular microchannel. The fluid motion is actuated by the combined consequences of the electroosmotic and pressure-gradient forces. For the rheological behavior of the non-Newtonian fluid, we have used the simplified Phan–Thien–Tanner viscoelastic model. Going beyond the Debye Hückel linearization approximation, we have used the full-scale solution for the electrical double-layer potential equation to obtain the exact analytical solutions for the velocity, flow rate, and shear rate parameters. In contrast, the temperature distribution and heat transfer for the thermally developing flow have been obtained by solving the energy equation numerically considering the effects of volumetric heat generation due to Joule heating and viscous dissipation. We find that a larger value of the viscoelastic set ε̃Wĩk2 contributes toward the net gain in flow rate. Both the normal and shear stress increase for increasing ε̃Wĩk2, while the shear viscosity reduces with a degree of surface charging. The average shear viscosity reduces with the degree of surface charging and at higher ε̃Wĩk2 values. The heat transfer is enhanced for augmenting ε̃Wĩk2, although the thermal entrance region gets contracted for a pure electroosmotic flow at higher Peclet numbers. Our study reveals that the heat transfer rate can be amplified by effectively modulating the degree of surface charging and ε̃Wĩk2. We have also carried out an entropy generation analysis, which shows the dominance of heat transfer irreversibility over fluid friction irreversibility. We believe that the present research will offer essential approaches for designing advanced energy-efficient microchannels appropriate to modern industrial applications using viscoelastic fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万安安发布了新的文献求助10
1秒前
orixero应助斯文明杰采纳,获得10
2秒前
孟孟发布了新的文献求助10
3秒前
3秒前
3秒前
xxxx0414完成签到 ,获得积分10
4秒前
5秒前
ky0927发布了新的文献求助30
6秒前
科研通AI5应助万安安采纳,获得10
7秒前
司空豁发布了新的文献求助10
7秒前
hcm发布了新的文献求助10
7秒前
昕想事成完成签到,获得积分10
7秒前
11秒前
科研通AI5应助司空豁采纳,获得10
11秒前
11秒前
11秒前
hcm完成签到,获得积分20
13秒前
blush完成签到 ,获得积分10
14秒前
睡教教主应助科研通管家采纳,获得60
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
大个应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
oyc发布了新的文献求助10
16秒前
深情安青应助橙子慢慢来采纳,获得10
19秒前
张张发布了新的文献求助10
21秒前
21秒前
李琛完成签到,获得积分10
22秒前
贪玩的朋友关注了科研通微信公众号
23秒前
25秒前
夏夜晚风关注了科研通微信公众号
25秒前
顾矜应助睡到人间煮饭时采纳,获得10
27秒前
sk夏冰发布了新的文献求助10
29秒前
29秒前
shufessm完成签到,获得积分0
30秒前
剑指东方是为谁应助文康采纳,获得10
31秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715349
求助须知:如何正确求助?哪些是违规求助? 3262299
关于积分的说明 9923743
捐赠科研通 2976075
什么是DOI,文献DOI怎么找? 1632071
邀请新用户注册赠送积分活动 774315
科研通“疑难数据库(出版商)”最低求助积分说明 744856