Multi-scale alignment in highly piezoelectric polyacrylonitrile nanofibers separator for advanced self-charging supercapacitor

材料科学 聚丙烯腈 压电 静电纺丝 纳米纤维 复合材料 聚偏氟乙烯 纳米发生器 超级电容器 分离器(采油) 功率密度 光电子学 纳米技术 电容 电极 聚合物 功率(物理) 物理化学 化学 物理 热力学 量子力学
作者
Chao Zhao,Jinyun Xu,Junzhu Tao,Changfa Xiao,Xin Jin,Wenyu Wang,Xing Liu,Jie Chen,Zhengtao Zhu
出处
期刊:Nano Energy [Elsevier BV]
卷期号:116: 108812-108812 被引量:21
标识
DOI:10.1016/j.nanoen.2023.108812
摘要

Self-charging supercapacitor (SCSPC) is an integrated device that can convert mechanical energy into electrical energy and store it to power microelectronics without need a rectifier for DC conversion. Here, we report a multi-alignment design idea for polyacrylonitrile (PAN) piezoelectric nanofiber instead of traditional polyvinylidene fluoride (PVDF) as a separator in SCSPCs, which greatly improves device self-charging performance and index. The combination of synergistic effect of polarization and the stretching process in electrospinning technology can achieve PAN nanofibers orderly arrangement at macroscopic level and alignment of conformation and cyano groups at microstructural level, resulting in excellent hydrophilicity (contact angle 0 °), high piezoelectric property (3.80 μW at a load resistance of 1 MΩ), high mechanical property (7.77 MPa), and outstanding cycling stability (unchanged after 22,000 cycles). As a result, the SCSPCs based on PAN piezoelectric separator has a high conversion efficiency of 12.53%, an energy density of 37.60 mJ cm−2 at power density of 1.01 mW cm−2, and a capacitance retention 91.7% after 5000 compressive cycles. The SCSPC@PAN with working area of 4 × 4 cm2 was attached on elbow, shoes, and bicycle tire to collect biomechanical energy and covert mechanical energy into electrical energy and store. Two SCSPC@PAN in series attached on one shoe can light 3.0 V LEDs after working for 40 min. This multi-scale alignment design idea and understanding the relationship between structure of PAN piezoelectric membrane and properties of SCSPC@PAN would provide important basis for design advanced piezoelectric separator for SCSPCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vermouth完成签到,获得积分10
1秒前
wjt发布了新的文献求助10
1秒前
国师快请坐完成签到,获得积分20
1秒前
2秒前
留胡子完成签到,获得积分20
2秒前
鹿由哒完成签到,获得积分20
3秒前
柚子叶滋滋完成签到 ,获得积分10
3秒前
所所应助景笑天采纳,获得10
4秒前
Yang完成签到,获得积分10
4秒前
星辰大海应助天羽世晴采纳,获得10
5秒前
5秒前
luo完成签到,获得积分10
5秒前
6秒前
wudi关注了科研通微信公众号
7秒前
wjt完成签到,获得积分10
7秒前
8秒前
9秒前
街上的纸屑完成签到 ,获得积分10
9秒前
留胡子发布了新的文献求助30
9秒前
10秒前
阿梁发布了新的文献求助10
11秒前
善学以致用应助张奎采纳,获得10
12秒前
Patience发布了新的文献求助10
13秒前
YLX发布了新的文献求助10
13秒前
13秒前
鱼与木头发布了新的文献求助10
13秒前
13秒前
北纬打工人完成签到,获得积分10
14秒前
零柒关注了科研通微信公众号
15秒前
jenningseastera应助咩咩采纳,获得10
15秒前
ww发布了新的文献求助10
16秒前
坐以待毕发布了新的文献求助10
17秒前
不配.应助虞无声采纳,获得50
18秒前
Orange应助阿梁采纳,获得10
18秒前
Lyj发布了新的文献求助10
19秒前
zhouzhou完成签到,获得积分10
19秒前
DA完成签到,获得积分10
19秒前
ZD完成签到 ,获得积分10
20秒前
小二郎应助叶子采纳,获得10
20秒前
白小ci完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547012
求助须知:如何正确求助?哪些是违规求助? 3978071
关于积分的说明 12318010
捐赠科研通 3646605
什么是DOI,文献DOI怎么找? 2008273
邀请新用户注册赠送积分活动 1043802
科研通“疑难数据库(出版商)”最低求助积分说明 932460