TS-Fastformer: Fast Transformer for Time-series Forecasting

计算机科学 瓶颈 变压器 推论 编码器 时间序列 人工智能 深度学习 系列(地层学) 机器学习 电压 物理 古生物学 嵌入式系统 操作系统 生物 量子力学
作者
Sangwon Lee,Junho Hong,Ling Liu,Wonik Choi
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (2): 1-20 被引量:7
标识
DOI:10.1145/3630637
摘要

Many real-world applications require precise and fast time-series forecasting. Recent trends in time-series forecasting models are shifting from LSTM-based models to Transformer-based models. However, the Transformer-based model has a limited ability to represent sequential relationships in time-series data. In addition, the transformer-based model suffers from slow training and inference speed due to the bottleneck incurred by a deep encoder and step-by-step decoder inference. To address these problems, we propose a time-series forecasting optimized Transformer model, called TS-Fastformer. TS-Fastformer introduces three new optimizations: First, we propose a Sub Window Tokenizer for compressing input in a simple manner. The Sub Window Tokenizer reduces the length of input sequences to mitigate the complexity of self-attention and enables both single and multi-sequence learning. Second, we propose Time-series Pre-trained Encoder to extract effective representations through pre-training. This optimization enables TS-Fastformer to capture both seasonal and trend representations as well as to mitigate bottlenecks of conventional transformer models. Third, we propose the Past Attention Decoder to forecast target by incorporating past long short-term dependency patterns. Furthermore, Past Attention Decoder achieves high performance improvement by removing a trend distribution that changes over a long period. We evaluate the efficiency of our model with extensive experiments using seven real-world datasets and compare our model to six representative time-series forecasting approaches. The results show that the proposed TS-Fastformer reduces MSE by 10.1% compared to state-of-the-art model and demonstrates 21.6% faster training time compared to the existing fastest transformer, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yang完成签到,获得积分20
2秒前
轻松小之发布了新的文献求助10
3秒前
gaoxun发布了新的文献求助10
3秒前
Anna发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
田様应助kkaky采纳,获得10
6秒前
情怀应助逃亡的小狗采纳,获得10
7秒前
7秒前
8秒前
迅速海云完成签到,获得积分10
9秒前
9秒前
完美世界应助sskaze采纳,获得10
10秒前
ding应助木瑾采纳,获得10
10秒前
10秒前
10秒前
11秒前
gdh发布了新的文献求助10
11秒前
鱼鱼鱼发布了新的文献求助10
11秒前
擦擦车发布了新的文献求助10
12秒前
摸摸桑完成签到,获得积分20
12秒前
13秒前
YZZ完成签到,获得积分10
13秒前
13秒前
GAOYI完成签到,获得积分10
13秒前
14秒前
英俊的铭应助木瑾采纳,获得100
15秒前
15秒前
15秒前
15秒前
瞬华发布了新的文献求助10
16秒前
16秒前
16秒前
桐桐应助擦擦车采纳,获得10
17秒前
GAOYI发布了新的文献求助10
18秒前
机灵哲瀚完成签到,获得积分10
19秒前
甲乙丙丁发布了新的文献求助10
19秒前
LALA发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420