TS-Fastformer: Fast Transformer for Time-series Forecasting

计算机科学 瓶颈 变压器 推论 编码器 时间序列 人工智能 深度学习 系列(地层学) 机器学习 电压 物理 古生物学 嵌入式系统 操作系统 生物 量子力学
作者
Sangwon Lee,Junho Hong,Ling Liu,Wonik Choi
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (2): 1-20 被引量:7
标识
DOI:10.1145/3630637
摘要

Many real-world applications require precise and fast time-series forecasting. Recent trends in time-series forecasting models are shifting from LSTM-based models to Transformer-based models. However, the Transformer-based model has a limited ability to represent sequential relationships in time-series data. In addition, the transformer-based model suffers from slow training and inference speed due to the bottleneck incurred by a deep encoder and step-by-step decoder inference. To address these problems, we propose a time-series forecasting optimized Transformer model, called TS-Fastformer. TS-Fastformer introduces three new optimizations: First, we propose a Sub Window Tokenizer for compressing input in a simple manner. The Sub Window Tokenizer reduces the length of input sequences to mitigate the complexity of self-attention and enables both single and multi-sequence learning. Second, we propose Time-series Pre-trained Encoder to extract effective representations through pre-training. This optimization enables TS-Fastformer to capture both seasonal and trend representations as well as to mitigate bottlenecks of conventional transformer models. Third, we propose the Past Attention Decoder to forecast target by incorporating past long short-term dependency patterns. Furthermore, Past Attention Decoder achieves high performance improvement by removing a trend distribution that changes over a long period. We evaluate the efficiency of our model with extensive experiments using seven real-world datasets and compare our model to six representative time-series forecasting approaches. The results show that the proposed TS-Fastformer reduces MSE by 10.1% compared to state-of-the-art model and demonstrates 21.6% faster training time compared to the existing fastest transformer, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tourist应助科研通管家采纳,获得150
刚刚
Xiaoxiao应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得30
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
Koalas应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Tourist应助科研通管家采纳,获得150
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
虚拟小号完成签到,获得积分0
1秒前
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
欢喜皮卡丘完成签到,获得积分10
2秒前
一洼清泉完成签到,获得积分10
3秒前
哈基米德应助Du采纳,获得20
3秒前
4秒前
米龙完成签到,获得积分10
6秒前
zhaohu47发布了新的文献求助10
6秒前
FashionBoy应助lingyao采纳,获得10
6秒前
6秒前
7秒前
开花结果发布了新的文献求助10
7秒前
好困a完成签到 ,获得积分10
8秒前
啦啦啦完成签到,获得积分10
8秒前
Becca发布了新的文献求助50
9秒前
10秒前
10秒前
ding应助宥兹采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
XXX完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086463
求助须知:如何正确求助?哪些是违规求助? 4302233
关于积分的说明 13407203
捐赠科研通 4127429
什么是DOI,文献DOI怎么找? 2260309
邀请新用户注册赠送积分活动 1264536
关于科研通互助平台的介绍 1198741