Intelligent charging and discharging of electric vehicles in a vehicle-to-grid system using a reinforcement learning-based approach

备份 强化学习 电池(电) 计算机科学 电动汽车 网格 智能电网 储能 汽车工程 可再生能源 车辆到电网 模拟 工程类 电气工程 功率(物理) 人工智能 数据库 物理 量子力学 数学 几何学
作者
Joo-Sung Maeng,Daiki Min,Yuncheol Kang
出处
期刊:Sustainable Energy, Grids and Networks [Elsevier]
卷期号:36: 101224-101224 被引量:8
标识
DOI:10.1016/j.segan.2023.101224
摘要

Recent advances in electric vehicle (EV) technology have increased the importance of vehicle-to-grid (V2G) systems in the smart grid domain. These systems allow bidirectional energy and information flow between consumers and suppliers, enabling the EV to act as an energy storage system that can provide surplus energy to the grid. V2G is particularly useful for reducing the peak demand and load shifting for utilities, acting as a backup system for renewable energy. To optimize the benefits of these systems, the intelligent management of charging and discharging is essential, while considering the electricity prices and user requirements. However, uncertainties such as commuting behavior, charging preferences, and energy requirements, pose challenges in determining the optimal charging/discharging strategy. In this study, individual EV charging/discharging is formulated as a sequential decision-making problem and a model-free reinforcement learning (RL) approach is utilized to learn the optimal sequential charging/discharging decisions until the EV battery reaches its end-of-life. The goal is to minimize the charging cost for the individual user and maximize the use of the EV battery as the vehicle proceeds through various charging and discharging cycles, while also considering the distance traveled by the vehicle. The proposed algorithm is evaluated using real-world data, and the learned charging and discharging strategies are examined to investigate the effectiveness of the proposed method. The experimental scenarios demonstrated that utilizing the RL approach is advantageous compared to the other approaches for reducing the overall cost and maximizing the use of EV batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫不语发布了新的文献求助10
刚刚
尼日利亚妖王完成签到,获得积分20
刚刚
GHL完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
任我行完成签到,获得积分10
2秒前
小二郎应助123采纳,获得10
2秒前
Xianhe完成签到,获得积分10
3秒前
萌萌哒完成签到,获得积分10
4秒前
任我行发布了新的文献求助10
6秒前
李健的小迷弟应助镁铝采纳,获得10
7秒前
7秒前
文章发的多多的完成签到,获得积分10
7秒前
Hhhhhhu发布了新的文献求助10
7秒前
直率的心情完成签到,获得积分10
10秒前
12秒前
16秒前
仁爱听露完成签到 ,获得积分10
17秒前
大个应助开放刺猬采纳,获得10
17秒前
缓慢冥幽完成签到 ,获得积分10
17秒前
脑洞疼应助娄医生采纳,获得10
18秒前
懒大王完成签到,获得积分10
18秒前
19秒前
Linya发布了新的文献求助10
20秒前
20秒前
GnodNy完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得20
23秒前
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
more应助科研通管家采纳,获得30
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
NXYZSM完成签到 ,获得积分10
23秒前
24秒前
镁铝发布了新的文献求助10
26秒前
安静的瑾瑜完成签到 ,获得积分10
27秒前
Smiley完成签到 ,获得积分10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103