A Data-Driven Human–Machine Collaborative Product Design System Toward Intelligent Manufacturing

产品设计 计算机科学 知识抽取 大数据 产品数据管理 灵活性(工程) 新产品开发 系统工程 产品(数学) 制造工程 产品生命周期 知识管理 工程类 人工智能 数据挖掘 统计 数学 业务 营销 几何学
作者
Wei Wei,Chuan Jiang,Yuzhe Huang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 736-749 被引量:4
标识
DOI:10.1109/tase.2023.3295571
摘要

In the era of big data, enterprises have accumulated large amounts of valuable data throughout the entire product life cycle (PLC). Such PLC data contains a wealth of design knowledge. Intelligent manufacturing seeks to establish a collaborative platform that integrates advanced data analytics and artificial intelligence into the manufacturing process, providing new opportunities for efficient and intelligent product design. Mining design knowledge from PLC data and applying it to the design stage is a critical issue that urgently needs to be addressed for data-driven product design (DDPD). To enhance the efficiency and adaptability of DDPD, this work proposes a comprehensive framework for extracting design knowledge from PLC data and utilizing the knowledge to inform the design process. A structured storage method is developed to manage PLC data with multi-source and heterogeneous characteristics. Then, human-machine collaborative pattern extraction, deep learning-based relation extraction, and other data mining techniques are used to extract knowledge from PLC data. Moreover, a product design knowledge network is constructed based on knowledge graph to achieve knowledge organization and management. Finally, a novel intelligent push method for product design knowledge, based on context navigation, is proposed as part of the framework. A case study showcases how data-driven human-machine collaborative patterns can be used to improve the flexibility and performance of product design. Note to Practitioners —Data-driven method can realize the closed-loop design of products while linking users, products and production processes to improve design efficiency. However, one of the major challenges in DDPD is the need to flexibly extract knowledge from PLC data and push them to designers. In this work, we propose a novel system that leverages human-machine collaboration and deep learning methods to realize DDPD toward intelligent manufacturing. It allows us to extract knowledge from product data, and then proactively push appropriate knowledge to designers for decision-making. The proposed system consists of three main components: product life cycle multi-source heterogeneous data processing, product design knowledge mining, and design knowledge intelligent pushing. Specifically, the human-machine collaboration mechanism improves the system’s capability to address uncertain and complex problems. A case study using shield machine PLC data has demonstrated the feasibility and effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木发布了新的文献求助10
刚刚
刚刚
Akim应助漠雨寒灯采纳,获得30
1秒前
1秒前
1秒前
Lucas应助菲菲采纳,获得10
1秒前
英俊翠霜完成签到,获得积分10
2秒前
一阳完成签到 ,获得积分10
2秒前
2秒前
Charlie完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
lk发布了新的文献求助10
4秒前
PPPhua完成签到,获得积分10
4秒前
木木发布了新的文献求助10
4秒前
tutulunzi完成签到,获得积分10
5秒前
Serein完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
小熊饼干发布了新的文献求助10
7秒前
7秒前
XHX关注了科研通微信公众号
7秒前
8秒前
8秒前
NB关闭了NB文献求助
8秒前
8秒前
严不平完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助Clark采纳,获得10
8秒前
8秒前
雾隐发布了新的文献求助10
8秒前
舒适语蓉发布了新的文献求助10
9秒前
面壁思过应助yy采纳,获得10
9秒前
深情安青应助棋士采纳,获得10
10秒前
邱海华完成签到,获得积分10
10秒前
嗣音发布了新的文献求助10
10秒前
程老板完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274