A Data-Driven Human–Machine Collaborative Product Design System Toward Intelligent Manufacturing

产品设计 计算机科学 知识抽取 大数据 产品数据管理 灵活性(工程) 新产品开发 系统工程 产品(数学) 制造工程 产品生命周期 知识管理 工程类 人工智能 数据挖掘 几何学 数学 营销 业务 统计
作者
Wei Wei,Chuan Jiang,Yuzhe Huang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tase.2023.3295571
摘要

In the era of big data, enterprises have accumulated large amounts of valuable data throughout the entire product life cycle (PLC). Such PLC data contains a wealth of design knowledge. Intelligent manufacturing seeks to establish a collaborative platform that integrates advanced data analytics and artificial intelligence into the manufacturing process, providing new opportunities for efficient and intelligent product design. Mining design knowledge from PLC data and applying it to the design stage is a critical issue that urgently needs to be addressed for data-driven product design (DDPD). To enhance the efficiency and adaptability of DDPD, this work proposes a comprehensive framework for extracting design knowledge from PLC data and utilizing the knowledge to inform the design process. A structured storage method is developed to manage PLC data with multi-source and heterogeneous characteristics. Then, human-machine collaborative pattern extraction, deep learning-based relation extraction, and other data mining techniques are used to extract knowledge from PLC data. Moreover, a product design knowledge network is constructed based on knowledge graph to achieve knowledge organization and management. Finally, a novel intelligent push method for product design knowledge, based on context navigation, is proposed as part of the framework. A case study showcases how data-driven human-machine collaborative patterns can be used to improve the flexibility and performance of product design. Note to Practitioners —Data-driven method can realize the closed-loop design of products while linking users, products and production processes to improve design efficiency. However, one of the major challenges in DDPD is the need to flexibly extract knowledge from PLC data and push them to designers. In this work, we propose a novel system that leverages human-machine collaboration and deep learning methods to realize DDPD toward intelligent manufacturing. It allows us to extract knowledge from product data, and then proactively push appropriate knowledge to designers for decision-making. The proposed system consists of three main components: product life cycle multi-source heterogeneous data processing, product design knowledge mining, and design knowledge intelligent pushing. Specifically, the human-machine collaboration mechanism improves the system’s capability to address uncertain and complex problems. A case study using shield machine PLC data has demonstrated the feasibility and effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团宝妞宝完成签到,获得积分10
1秒前
1秒前
蓝色花生豆完成签到,获得积分10
3秒前
阿信必发JACS完成签到,获得积分10
4秒前
4秒前
归陌发布了新的文献求助10
4秒前
aldehyde应助siver采纳,获得10
6秒前
6秒前
6秒前
燕子发布了新的文献求助10
7秒前
7秒前
7秒前
美丽心情完成签到,获得积分10
8秒前
能干的人完成签到,获得积分10
8秒前
8秒前
11秒前
12秒前
12秒前
Biggest发布了新的文献求助10
13秒前
啦啦啦完成签到 ,获得积分10
13秒前
LUO发布了新的文献求助10
13秒前
132132zl发布了新的文献求助10
13秒前
14秒前
16秒前
tingting9发布了新的文献求助10
16秒前
Bruce发布了新的文献求助10
17秒前
18秒前
慕青应助月下荷花采纳,获得10
19秒前
jayus完成签到,获得积分10
20秒前
烟花应助111采纳,获得10
20秒前
ED应助完美的仙人掌采纳,获得10
20秒前
yimaos完成签到,获得积分10
21秒前
斯文败类应助假茂茂采纳,获得10
21秒前
23秒前
tingting9完成签到,获得积分10
23秒前
博士加油完成签到,获得积分10
23秒前
LUO完成签到 ,获得积分10
23秒前
完美世界应助酷酷巧蟹采纳,获得10
23秒前
25秒前
归陌完成签到,获得积分10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980440
求助须知:如何正确求助?哪些是违规求助? 3524384
关于积分的说明 11221298
捐赠科研通 3261829
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283