A Data-Driven Human–Machine Collaborative Product Design System Toward Intelligent Manufacturing

产品设计 计算机科学 知识抽取 大数据 产品数据管理 灵活性(工程) 新产品开发 系统工程 产品(数学) 制造工程 产品生命周期 知识管理 工程类 人工智能 数据挖掘 统计 数学 业务 营销 几何学
作者
Wei Wei,Chuan Jiang,Yuzhe Huang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 736-749 被引量:4
标识
DOI:10.1109/tase.2023.3295571
摘要

In the era of big data, enterprises have accumulated large amounts of valuable data throughout the entire product life cycle (PLC). Such PLC data contains a wealth of design knowledge. Intelligent manufacturing seeks to establish a collaborative platform that integrates advanced data analytics and artificial intelligence into the manufacturing process, providing new opportunities for efficient and intelligent product design. Mining design knowledge from PLC data and applying it to the design stage is a critical issue that urgently needs to be addressed for data-driven product design (DDPD). To enhance the efficiency and adaptability of DDPD, this work proposes a comprehensive framework for extracting design knowledge from PLC data and utilizing the knowledge to inform the design process. A structured storage method is developed to manage PLC data with multi-source and heterogeneous characteristics. Then, human-machine collaborative pattern extraction, deep learning-based relation extraction, and other data mining techniques are used to extract knowledge from PLC data. Moreover, a product design knowledge network is constructed based on knowledge graph to achieve knowledge organization and management. Finally, a novel intelligent push method for product design knowledge, based on context navigation, is proposed as part of the framework. A case study showcases how data-driven human-machine collaborative patterns can be used to improve the flexibility and performance of product design. Note to Practitioners —Data-driven method can realize the closed-loop design of products while linking users, products and production processes to improve design efficiency. However, one of the major challenges in DDPD is the need to flexibly extract knowledge from PLC data and push them to designers. In this work, we propose a novel system that leverages human-machine collaboration and deep learning methods to realize DDPD toward intelligent manufacturing. It allows us to extract knowledge from product data, and then proactively push appropriate knowledge to designers for decision-making. The proposed system consists of three main components: product life cycle multi-source heterogeneous data processing, product design knowledge mining, and design knowledge intelligent pushing. Specifically, the human-machine collaboration mechanism improves the system’s capability to address uncertain and complex problems. A case study using shield machine PLC data has demonstrated the feasibility and effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lizishu应助超级的友儿采纳,获得10
1秒前
胡凯发布了新的文献求助10
2秒前
陈一会完成签到 ,获得积分10
2秒前
3秒前
3秒前
miemie66发布了新的文献求助10
3秒前
听话的清完成签到,获得积分20
4秒前
可口不可乐完成签到,获得积分20
4秒前
傅31发布了新的文献求助10
4秒前
七哒蹦完成签到,获得积分10
4秒前
CHBW完成签到,获得积分20
5秒前
自然的吐司完成签到 ,获得积分10
5秒前
5秒前
Apricot发布了新的文献求助10
5秒前
5秒前
6秒前
季忆完成签到,获得积分10
7秒前
7秒前
今后应助细心觅风采纳,获得10
7秒前
7秒前
苗条安莲发布了新的文献求助10
7秒前
情怀应助大力的银耳汤采纳,获得10
8秒前
8秒前
shju发布了新的文献求助10
9秒前
CHBW发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
9秒前
10秒前
mq发布了新的文献求助10
10秒前
10秒前
小胡发布了新的文献求助10
10秒前
11秒前
11秒前
受伤的怀绿完成签到,获得积分10
13秒前
13秒前
钟梓袄发布了新的文献求助10
13秒前
易殇发布了新的文献求助10
13秒前
上官若男应助微笑晓丝采纳,获得10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776061
求助须知:如何正确求助?哪些是违规求助? 5627600
关于积分的说明 15440994
捐赠科研通 4908309
什么是DOI,文献DOI怎么找? 2641154
邀请新用户注册赠送积分活动 1588998
关于科研通互助平台的介绍 1543807