Anion regulation strategy of lithium-aluminum layered double hydroxides for strengthening resistance to deactivation in lithium recovery from brines

层状双氢氧化物 插层(化学) 吸附 锂(药物) 卤水 化学 选择性 解吸 无机化学 八面体 萃取(化学) 化学工程 离子 催化作用 有机化学 内分泌学 工程类 医学
作者
Shuaike Lv,Yunliang Zhao,Lingjie Zhang,Tingting Zhang,Guangfeng Dong,Dongxing Li,Shuai Cheng,Songliang Ma,Shaoxian Song,Mildred Quintana
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:472: 145026-145026 被引量:28
标识
DOI:10.1016/j.cej.2023.145026
摘要

Lithium aluminum layered double hydroxides (LiAl-LDHs) have emerged as the most promising adsorbent for lithium extraction from salt lake brines. However, the development of LiAl-LDHs is impeded by their susceptibility to structural collapse and deactivation during desorption process. Herein, an interlayer anion regulation strategy was proposed to endow LiAl-LDHs with superior resistance to deactivation induced by excessive Li+ deintercalation through strengthening the interlayer interactions. Consequently, a novel LiAl-LDH with interlayer Cl− partially replaced by PO43− (LiAl-LDH-P) was synthesized by coupling PO43− intercalation with Li+ insertion during co-precipitation. Combining DFT calculations and elution strength experiments, it was revealed that the intercalated PO43− could anchor Li+ into the vacancies of Al-O octahedron via high interlayer binding energy and strong electrostatic interaction, which imparted LiAl-LDH-P with an excellent anti-elution deactivation ability. Moreover, LiAl-LDH-P presented distinctly advanced compared to commercialized and reported LiAl-LDHs, with extraordinary Li+ adsorption capacity (9.35 mg/g), selectivity (separation factors of 270.3, 450.3, 453.7 for Li+/Na+, Li+/K+, Li+/Mg2+, respectively), and reusability in Lop Nor brine, even at the ultra-high eluent consumption. Furthermore, the physicochemical properties and Li+-extraction mechanism of the LiAl-LDH-P were investigated as well. This work provides a promising strategy to solve the current deactivation of LiAl-LDHs and offers a prospective adsorbent for Li+ extraction from brine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助落落采纳,获得10
3秒前
67发布了新的文献求助10
3秒前
3秒前
溜溜完成签到,获得积分10
3秒前
xixi完成签到 ,获得积分10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
撒上咖啡应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
琪琪扬扬发布了新的文献求助10
4秒前
sutharsons应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
清爽老九应助科研通管家采纳,获得20
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
hui发布了新的文献求助30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
6秒前
迟大猫应助若狂采纳,获得10
6秒前
11111发布了新的文献求助30
6秒前
溜溜发布了新的文献求助10
7秒前
8秒前
wanli445完成签到,获得积分10
9秒前
科研通AI2S应助satchzhao采纳,获得10
9秒前
是小程啊完成签到 ,获得积分10
9秒前
琪琪扬扬完成签到,获得积分10
10秒前
11111完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808