Enhancing proton conduction of high temperature proton exchange membranes based on carbon dots doped polyvinyl chloride nanofibers

聚氯乙烯 质子 材料科学 电导率 化学工程 质子交换膜燃料电池 纳米纤维 热传导 磷酸 高分子化学 化学 复合材料 物理化学 物理 工程类 冶金 量子力学 生物化学
作者
Ke Liu,Xiaoqing Wei,Shu Hu,Qingquan Li,Weimin Gao,Dan Wu,Quantong Che
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:325: 124679-124679 被引量:9
标识
DOI:10.1016/j.seppur.2023.124679
摘要

Carbon dots (CDs) as the easy-to-get and cheap carbon nanomaterials exhibited the great potential in various high-performance electrolytes. In this research, we constructed high temperature proton exchange membranes with multilayered microstructures through a couple of polyvinyl chloride (PVC) nanofibers layers wrapping a thin CDs layer. In the prepared (PVC/CDs/PVC)es membrane, the CDs provided a mount of sites to anchor phosphoric acid (PA) molecules with the formation of the (PVC/CDs/PVC)es/PA membrane. The proton conduction was accelerated by the continuous proton conduction channels consisting of the CDs layer and PA molecular chains. Notably, the proton conduction behavior was guided by the PVC nanofibers in the (PVC/CDs/PVC)es/PA membrane. Furthermore, a large number of hydrophilic oxygenated functional groups surrounding CDs facilitated the proton conduction process owing to the reduced proton conduction resistance in the hydrophilic membrane. For the PVC/ImCDs/PA membrane, the imidazolium groups could enhance proton conductivity. From our perspective, the imidazolium groups grafted CDs (ImCDs) participated into the proton conduction process through providing imidazolium groups for ameliorating proton conduction network. The enhanced proton conduction was achieved through constructing multilayered structure. Specifically, the (PVC/CDs/PVC)es/PA membrane exhibited the proton conductivity of 5.61 × 10-3 S/cm at 150 °C, which was higher than 7.73 × 10-4 S/cm of the PVC/CDs/PA membrane. Notably, the PA doped membrane could retain the mechanical strength without microstructure expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joeswith完成签到,获得积分10
2秒前
0.5地板砖发布了新的文献求助10
3秒前
世上僅有的榮光之路完成签到,获得积分0
3秒前
victorchen完成签到,获得积分10
3秒前
4秒前
空白完成签到,获得积分10
4秒前
5秒前
5秒前
Tina酱完成签到 ,获得积分10
5秒前
km完成签到 ,获得积分10
5秒前
搜集达人应助Alger采纳,获得10
6秒前
学术rookie完成签到,获得积分10
6秒前
6秒前
winwin完成签到,获得积分10
6秒前
1111完成签到,获得积分10
7秒前
张小度ever完成签到 ,获得积分10
7秒前
司空蓝发布了新的文献求助20
8秒前
Justtry发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
eric完成签到,获得积分10
8秒前
GZ发布了新的文献求助10
9秒前
5High_0完成签到 ,获得积分10
10秒前
海东来应助猪美丽采纳,获得30
10秒前
Sylvia发布了新的文献求助10
11秒前
ZYQ完成签到 ,获得积分10
11秒前
Q_完成签到 ,获得积分10
12秒前
JamesPei应助TJJJJJ采纳,获得10
13秒前
0.5地板砖完成签到,获得积分10
13秒前
13秒前
StevenW完成签到,获得积分10
13秒前
nan完成签到,获得积分10
15秒前
老迟到的羊完成签到 ,获得积分10
16秒前
Orange应助Skywings采纳,获得30
17秒前
司空蓝完成签到,获得积分10
17秒前
wang完成签到,获得积分10
17秒前
双shuang完成签到,获得积分10
17秒前
wangchong完成签到 ,获得积分10
18秒前
chenlichan完成签到,获得积分10
19秒前
Jenny完成签到,获得积分10
20秒前
qsmei2020完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008892
求助须知:如何正确求助?哪些是违规求助? 3548554
关于积分的说明 11299093
捐赠科研通 3283171
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811245