已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TriRNet: Real-Time Rail Recognition Network for UAV-Based Railway Inspection

铁路网 计算机科学 实时计算 人工智能 工程类 运输工程
作者
Lei Tong,Zhipeng Wang,Limin Jia,Yong Qin,Donghai Song,Bidong Miao,Tian Tang,Yixuan Geng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 3927-3943 被引量:1
标识
DOI:10.1109/tits.2023.3328379
摘要

UAVs have a broad application prospect in the field of railway inspection due to their excellent mobility and flexibility. However, it still faces challenges, such as high human labor costs and low intelligence levels. Therefore, it is of great significance to develop a real-time intelligent rail recognition algorithm that can be deployed on the onboard computing device to guide the UAV's camera to follow the target rail area and complete the inspection automatically. However, a significant issue is that rails from the perspective of UAVs may appear with changing pixel widths and various inclination angles. Concerning the issue, a general and adaptive rail representation method based on projection length discrimination (RRM-PLD) is proposed. It can always select the optimal representation direction, horizontal or vertical, to represent any kind of rails. With the RRM-PLD, a novel architecture (Real-Time Rail Recognition Network, TriRNet) is proposed. In TriRNet, a designed inter-rail attention (IRA) mechanism is presented to fuse local features of single rails and global features of other rails to accurately discriminate the geometric distribution of all rails in the image in a regressive way and thus improve the final recognition accuracy. Further, one-to-one mapping from anchor points to final feature maps is established. It greatly simplifies the model design process and improves the model's interpretability. Besides, detailed model training strategies are also presented. Extensive experiments have verified the effectiveness and superiority of the proposed formulation in terms of both network reasoning latency and recognition accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
八合一发布了新的文献求助10
9秒前
9秒前
江河发布了新的文献求助10
11秒前
陈甸甸完成签到 ,获得积分10
12秒前
12秒前
Telomere发布了新的文献求助10
13秒前
翎儿响叮当完成签到 ,获得积分10
13秒前
小英发布了新的文献求助10
15秒前
15秒前
19秒前
20秒前
20秒前
22秒前
lumi发布了新的文献求助20
23秒前
24秒前
zhangzhen发布了新的文献求助10
25秒前
BASS完成签到,获得积分10
25秒前
逆光夏年发布了新的文献求助10
26秒前
27秒前
情怀应助愤怒的水壶采纳,获得10
27秒前
xiaoxixixier完成签到 ,获得积分10
27秒前
TMU完成签到,获得积分10
28秒前
缓慢山柳完成签到,获得积分10
30秒前
30秒前
CMCM发布了新的文献求助10
32秒前
Jinnianlun完成签到 ,获得积分10
32秒前
LAN发布了新的文献求助10
32秒前
李爱国应助Hilda采纳,获得10
34秒前
嗯哼应助kaka采纳,获得20
35秒前
江河完成签到 ,获得积分20
39秒前
40秒前
41秒前
毛豆应助科研狂人采纳,获得10
42秒前
江河关注了科研通微信公众号
42秒前
43秒前
43秒前
科目三应助Kestis.采纳,获得10
43秒前
斯文败类应助粗犷的灵松采纳,获得10
43秒前
笨笨完成签到,获得积分10
44秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417194
求助须知:如何正确求助?哪些是违规求助? 3018881
关于积分的说明 8885665
捐赠科研通 2706288
什么是DOI,文献DOI怎么找? 1484125
科研通“疑难数据库(出版商)”最低求助积分说明 685944
邀请新用户注册赠送积分活动 681108