工作流程
计算机科学
人工智能
分辨率(逻辑)
计算机视觉
图像分辨率
迭代重建
高分辨率
显微镜
光学
遥感
物理
地质学
数据库
作者
Syahirah Mohammad-Zulkifli,Bernice Zee,Qiu Wen,Maverique Ong,Yanjing Yang,Andriy Andreyev,Masako Terada,Allen Gu
出处
期刊:Proceedings
日期:2023-11-08
被引量:1
标识
DOI:10.31399/asm.cp.istfa2023p0443
摘要
Abstract 3D X-ray microscopy (XRM) is an effective highresolution and non-destructive tool for semiconductor package level failure analysis. One limitation with XRM is the ability to achieve high-resolution 3D images over large fields of view (FOVs) within acceptable scan times. As modern semiconductor packages become more complex, there are increasing demands for 3D X-ray instruments to image encapsulated structures and failures with high productivity and efficiency. With the challenge to precisely localize fault regions, it may require high-resolution imaging with a FOV of tens of millimeters. This may take over hundreds of hours of scans if many high-resolution but small-volume scans are performed and followed with the conventional 3D registration and stitches. In this work, a novel deep learning reconstruction method and workflow to address the issue of achieving highresolution imaging over a large FOV is reported. The AI powered technique and workflow can be used to restore the resolution over the large FOV scan with only a high-resolution and a large FOV scan. Additionally, the 3D registration and stitch workflow are automated to achieve the large FOV images with a recovered resolution comparable to the actual high-resolution scan.
科研通智能强力驱动
Strongly Powered by AbleSci AI