Detecting Temporal Inconsistency in Biased Datasets for Android Malware Detection

计算机科学 Android恶意软件 恶意软件 Android(操作系统) 稳健性(进化) 数据挖掘 机器学习 水准点(测量) 人工智能 计算机安全 操作系统 生物化学 化学 大地测量学 基因 地理
作者
Haonan Hu,Yue Liu,Yanjie Zhao,Yonghui Liu,Xiaoyu Sun,Chakkrit Tantithamthavorn,Li Li
标识
DOI:10.1109/asew60602.2023.00007
摘要

Machine learning (ML) has exhibited great potential in Android malware detection. Yet, the reliability of these ML models, as well as the fairness of their evaluation, hinge significantly on the quality of the datasets used. A significant issue compromising these aspects is the presence of temporal inconsistencies within datasets, which could lead to overestimated detection performance. While previous research has acknowledged the impact of temporal inconsistencies, the proposed detection approaches often falter in accuracy and practicality. Previous studies have had limitations when it comes to dealing with complex cases of temporal inconsistencies. Additionally, their approaches require knowledge of a dataset's temporal attributes, which is often not realistic in real-world applications. In response to these challenges, we propose a novel ML-based approach to comprehensively and effectively detect temporal inconsistencies in Android malware datasets, regardless of the magnitude of these inconsistencies. Distinguishing itself from prior attempts, our approach accurately identifies inconsistencies in unknown datasets, without making any assumptions about their temporal attributes. Moreover, we introduce a new benchmark dataset of 78,000 diverse Android samples, spanning malware to benign samples from 2010 to 2022, for exploring temporal inconsistency. A rigorous evaluation of our approach using this dataset reveals its proficiency in managing temporal inconsistencies, achieving a remarkable 98.3% detection accuracy. We further validate the efficacy of our feature selection procedure and demonstrate the robustness of our approach when applied to unknown datasets. Collectively, our findings pioneer a novel performance standard in Android malware detection assessments, contributing to the enhancement of reliability in ML-based techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一块闲土豆完成签到,获得积分10
刚刚
刚刚
刚刚
Rare完成签到 ,获得积分10
刚刚
嘻嘻哈哈应助jinling采纳,获得10
1秒前
1秒前
Jasper应助乾乾采纳,获得10
1秒前
随性随缘随命完成签到 ,获得积分10
1秒前
塔依尔发布了新的文献求助10
1秒前
CHENG完成签到,获得积分10
2秒前
2秒前
mouxq发布了新的文献求助10
2秒前
慕青应助AdamJie采纳,获得10
2秒前
研友_VZG7GZ应助阿苏采纳,获得50
2秒前
2秒前
3秒前
3秒前
嘟嘟发布了新的文献求助10
3秒前
王秋实关注了科研通微信公众号
3秒前
4秒前
pzh发布了新的文献求助10
4秒前
贝利亚发布了新的文献求助10
5秒前
1111完成签到,获得积分10
5秒前
5秒前
李大胖胖完成签到 ,获得积分10
6秒前
6秒前
奋斗的初丹关注了科研通微信公众号
7秒前
7秒前
maidavy发布了新的文献求助10
7秒前
bbible完成签到 ,获得积分10
7秒前
Smile完成签到,获得积分10
8秒前
共享精神应助执着的忆曼采纳,获得20
8秒前
8秒前
phd_cheng发布了新的文献求助10
9秒前
传奇3应助小雨采纳,获得10
9秒前
华仔应助复杂曼梅采纳,获得10
9秒前
佳佳完成签到,获得积分10
11秒前
11秒前
MING完成签到 ,获得积分10
11秒前
潇洒完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270740
求助须知:如何正确求助?哪些是违规求助? 4428811
关于积分的说明 13786039
捐赠科研通 4306719
什么是DOI,文献DOI怎么找? 2363198
邀请新用户注册赠送积分活动 1358900
关于科研通互助平台的介绍 1321814