Detecting Temporal Inconsistency in Biased Datasets for Android Malware Detection

计算机科学 Android恶意软件 恶意软件 Android(操作系统) 稳健性(进化) 数据挖掘 机器学习 水准点(测量) 人工智能 计算机安全 操作系统 生物化学 化学 大地测量学 基因 地理
作者
Haonan Hu,Yue Liu,Yanjie Zhao,Yonghui Liu,Xiaoyu Sun,Chakkrit Tantithamthavorn,Li Li
标识
DOI:10.1109/asew60602.2023.00007
摘要

Machine learning (ML) has exhibited great potential in Android malware detection. Yet, the reliability of these ML models, as well as the fairness of their evaluation, hinge significantly on the quality of the datasets used. A significant issue compromising these aspects is the presence of temporal inconsistencies within datasets, which could lead to overestimated detection performance. While previous research has acknowledged the impact of temporal inconsistencies, the proposed detection approaches often falter in accuracy and practicality. Previous studies have had limitations when it comes to dealing with complex cases of temporal inconsistencies. Additionally, their approaches require knowledge of a dataset's temporal attributes, which is often not realistic in real-world applications. In response to these challenges, we propose a novel ML-based approach to comprehensively and effectively detect temporal inconsistencies in Android malware datasets, regardless of the magnitude of these inconsistencies. Distinguishing itself from prior attempts, our approach accurately identifies inconsistencies in unknown datasets, without making any assumptions about their temporal attributes. Moreover, we introduce a new benchmark dataset of 78,000 diverse Android samples, spanning malware to benign samples from 2010 to 2022, for exploring temporal inconsistency. A rigorous evaluation of our approach using this dataset reveals its proficiency in managing temporal inconsistencies, achieving a remarkable 98.3% detection accuracy. We further validate the efficacy of our feature selection procedure and demonstrate the robustness of our approach when applied to unknown datasets. Collectively, our findings pioneer a novel performance standard in Android malware detection assessments, contributing to the enhancement of reliability in ML-based techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非要叫我起个昵称完成签到,获得积分10
1秒前
Akim应助LYY采纳,获得10
1秒前
哈理老萝卜完成签到,获得积分10
2秒前
石头完成签到,获得积分10
3秒前
6秒前
6秒前
稀罕你完成签到,获得积分10
6秒前
7秒前
8秒前
FXDD完成签到,获得积分10
8秒前
淼吉完成签到,获得积分10
8秒前
11秒前
狼来了aas完成签到,获得积分10
11秒前
有机发布了新的文献求助10
11秒前
MMM完成签到,获得积分10
14秒前
1_a发布了新的文献求助10
14秒前
14秒前
24号甜冰茶完成签到,获得积分10
15秒前
zfc93完成签到,获得积分10
15秒前
CC发布了新的文献求助20
16秒前
明亮灭绝完成签到,获得积分10
17秒前
SciGPT应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
LRRAM_809应助科研通管家采纳,获得10
18秒前
18秒前
烟花应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
18秒前
桐桐应助科研通管家采纳,获得30
18秒前
ding应助科研通管家采纳,获得10
18秒前
子车茗应助科研通管家采纳,获得36
18秒前
ding应助科研通管家采纳,获得10
18秒前
可耐的西装完成签到,获得积分10
19秒前
太阳完成签到 ,获得积分10
19秒前
Jasper应助1_a采纳,获得10
20秒前
小雯完成签到 ,获得积分10
22秒前
22秒前
Akim应助大力沛萍采纳,获得10
22秒前
研友_LBKR9n完成签到,获得积分10
23秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464463
求助须知:如何正确求助?哪些是违规求助? 3057839
关于积分的说明 9058737
捐赠科研通 2747955
什么是DOI,文献DOI怎么找? 1507640
科研通“疑难数据库(出版商)”最低求助积分说明 696627
邀请新用户注册赠送积分活动 696248