Detecting Temporal Inconsistency in Biased Datasets for Android Malware Detection

计算机科学 Android恶意软件 恶意软件 Android(操作系统) 稳健性(进化) 数据挖掘 机器学习 水准点(测量) 人工智能 计算机安全 操作系统 生物化学 化学 大地测量学 基因 地理
作者
Haonan Hu,Yue Liu,Yanjie Zhao,Yonghui Liu,Xiaoyu Sun,Chakkrit Tantithamthavorn,Li Li
标识
DOI:10.1109/asew60602.2023.00007
摘要

Machine learning (ML) has exhibited great potential in Android malware detection. Yet, the reliability of these ML models, as well as the fairness of their evaluation, hinge significantly on the quality of the datasets used. A significant issue compromising these aspects is the presence of temporal inconsistencies within datasets, which could lead to overestimated detection performance. While previous research has acknowledged the impact of temporal inconsistencies, the proposed detection approaches often falter in accuracy and practicality. Previous studies have had limitations when it comes to dealing with complex cases of temporal inconsistencies. Additionally, their approaches require knowledge of a dataset's temporal attributes, which is often not realistic in real-world applications. In response to these challenges, we propose a novel ML-based approach to comprehensively and effectively detect temporal inconsistencies in Android malware datasets, regardless of the magnitude of these inconsistencies. Distinguishing itself from prior attempts, our approach accurately identifies inconsistencies in unknown datasets, without making any assumptions about their temporal attributes. Moreover, we introduce a new benchmark dataset of 78,000 diverse Android samples, spanning malware to benign samples from 2010 to 2022, for exploring temporal inconsistency. A rigorous evaluation of our approach using this dataset reveals its proficiency in managing temporal inconsistencies, achieving a remarkable 98.3% detection accuracy. We further validate the efficacy of our feature selection procedure and demonstrate the robustness of our approach when applied to unknown datasets. Collectively, our findings pioneer a novel performance standard in Android malware detection assessments, contributing to the enhancement of reliability in ML-based techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助10
刚刚
1秒前
yar完成签到,获得积分0
1秒前
1秒前
1秒前
1秒前
顾暖完成签到,获得积分10
1秒前
隐形曼青应助囚徒采纳,获得10
2秒前
3秒前
英俊安蕾发布了新的文献求助10
3秒前
苹果发布了新的文献求助10
3秒前
繁荣的萝莉完成签到,获得积分10
3秒前
3秒前
4秒前
Ava应助苏氨酸采纳,获得30
4秒前
5秒前
胡燕完成签到 ,获得积分10
5秒前
lirongcas完成签到,获得积分20
5秒前
隐形觅翠发布了新的文献求助10
5秒前
SYLH应助聪慧冰淇淋采纳,获得10
5秒前
淡然秋蝶关注了科研通微信公众号
5秒前
iii发布了新的文献求助10
6秒前
mumu发布了新的文献求助10
6秒前
6秒前
6秒前
gmc完成签到 ,获得积分10
7秒前
小橙子完成签到,获得积分10
7秒前
7秒前
tkzzz完成签到,获得积分10
7秒前
博修发布了新的文献求助30
8秒前
霏冉完成签到,获得积分10
8秒前
8秒前
旭爸爸发布了新的文献求助10
8秒前
医路有你完成签到 ,获得积分10
8秒前
HJJHJH发布了新的文献求助10
8秒前
mmc完成签到,获得积分10
9秒前
Felice完成签到,获得积分10
9秒前
9秒前
和abc完成签到,获得积分10
10秒前
KanmenRider完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650