Detecting Temporal Inconsistency in Biased Datasets for Android Malware Detection

计算机科学 Android恶意软件 恶意软件 Android(操作系统) 稳健性(进化) 数据挖掘 机器学习 水准点(测量) 人工智能 计算机安全 操作系统 生物化学 化学 大地测量学 基因 地理
作者
Haonan Hu,Yue Liu,Yanjie Zhao,Yonghui Liu,Xiaoyu Sun,Chakkrit Tantithamthavorn,Li Li
标识
DOI:10.1109/asew60602.2023.00007
摘要

Machine learning (ML) has exhibited great potential in Android malware detection. Yet, the reliability of these ML models, as well as the fairness of their evaluation, hinge significantly on the quality of the datasets used. A significant issue compromising these aspects is the presence of temporal inconsistencies within datasets, which could lead to overestimated detection performance. While previous research has acknowledged the impact of temporal inconsistencies, the proposed detection approaches often falter in accuracy and practicality. Previous studies have had limitations when it comes to dealing with complex cases of temporal inconsistencies. Additionally, their approaches require knowledge of a dataset's temporal attributes, which is often not realistic in real-world applications. In response to these challenges, we propose a novel ML-based approach to comprehensively and effectively detect temporal inconsistencies in Android malware datasets, regardless of the magnitude of these inconsistencies. Distinguishing itself from prior attempts, our approach accurately identifies inconsistencies in unknown datasets, without making any assumptions about their temporal attributes. Moreover, we introduce a new benchmark dataset of 78,000 diverse Android samples, spanning malware to benign samples from 2010 to 2022, for exploring temporal inconsistency. A rigorous evaluation of our approach using this dataset reveals its proficiency in managing temporal inconsistencies, achieving a remarkable 98.3% detection accuracy. We further validate the efficacy of our feature selection procedure and demonstrate the robustness of our approach when applied to unknown datasets. Collectively, our findings pioneer a novel performance standard in Android malware detection assessments, contributing to the enhancement of reliability in ML-based techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
烟雨发布了新的文献求助10
1秒前
烟花应助辛勤的晓兰采纳,获得10
1秒前
可爱的函函应助zgggggggggg采纳,获得10
1秒前
DJDJ发布了新的文献求助10
1秒前
2秒前
Geoer完成签到,获得积分10
2秒前
美好丹秋完成签到 ,获得积分10
2秒前
2秒前
NexusExplorer应助柯米克采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Jasper应助刘轩雨采纳,获得10
4秒前
ccc发布了新的文献求助10
4秒前
求助人员发布了新的文献求助10
4秒前
hu完成签到,获得积分20
5秒前
123完成签到,获得积分10
5秒前
xx发布了新的文献求助10
5秒前
吹梦西洲发布了新的文献求助10
6秒前
老迟到的定帮完成签到,获得积分10
6秒前
bkagyin应助幼儿园霸主采纳,获得10
6秒前
6秒前
yfn发布了新的文献求助10
7秒前
彭于晏应助STP顶峰相见采纳,获得50
7秒前
8秒前
DJDJ完成签到,获得积分10
8秒前
心灵美的涑完成签到 ,获得积分10
8秒前
8秒前
drama_queen发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
WM关闭了WM文献求助
9秒前
彭于晏应助yyy采纳,获得10
9秒前
Jasper应助winwin采纳,获得10
10秒前
10秒前
于金正发布了新的文献求助10
10秒前
123123发布了新的文献求助10
11秒前
照亮世界的ay完成签到,获得积分10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581731
求助须知:如何正确求助?哪些是违规求助? 4665950
关于积分的说明 14759751
捐赠科研通 4607883
什么是DOI,文献DOI怎么找? 2528410
邀请新用户注册赠送积分活动 1497684
关于科研通互助平台的介绍 1466564