Detecting Temporal Inconsistency in Biased Datasets for Android Malware Detection

计算机科学 Android恶意软件 恶意软件 Android(操作系统) 稳健性(进化) 数据挖掘 机器学习 水准点(测量) 人工智能 计算机安全 大地测量学 生物化学 基因 操作系统 化学 地理
作者
Haonan Hu,Yue Liu,Yanjie Zhao,Yonghui Liu,Xiaoyu Sun,Chakkrit Tantithamthavorn,Li Li
标识
DOI:10.1109/asew60602.2023.00007
摘要

Machine learning (ML) has exhibited great potential in Android malware detection. Yet, the reliability of these ML models, as well as the fairness of their evaluation, hinge significantly on the quality of the datasets used. A significant issue compromising these aspects is the presence of temporal inconsistencies within datasets, which could lead to overestimated detection performance. While previous research has acknowledged the impact of temporal inconsistencies, the proposed detection approaches often falter in accuracy and practicality. Previous studies have had limitations when it comes to dealing with complex cases of temporal inconsistencies. Additionally, their approaches require knowledge of a dataset's temporal attributes, which is often not realistic in real-world applications. In response to these challenges, we propose a novel ML-based approach to comprehensively and effectively detect temporal inconsistencies in Android malware datasets, regardless of the magnitude of these inconsistencies. Distinguishing itself from prior attempts, our approach accurately identifies inconsistencies in unknown datasets, without making any assumptions about their temporal attributes. Moreover, we introduce a new benchmark dataset of 78,000 diverse Android samples, spanning malware to benign samples from 2010 to 2022, for exploring temporal inconsistency. A rigorous evaluation of our approach using this dataset reveals its proficiency in managing temporal inconsistencies, achieving a remarkable 98.3% detection accuracy. We further validate the efficacy of our feature selection procedure and demonstrate the robustness of our approach when applied to unknown datasets. Collectively, our findings pioneer a novel performance standard in Android malware detection assessments, contributing to the enhancement of reliability in ML-based techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷成威发布了新的文献求助10
2秒前
pooh发布了新的文献求助10
2秒前
Jovie7完成签到,获得积分10
2秒前
今天摸鱼了嘛给今天摸鱼了嘛的求助进行了留言
2秒前
2秒前
jiayi完成签到,获得积分10
3秒前
4秒前
4秒前
情怀应助怡然缘分采纳,获得10
4秒前
因几完成签到 ,获得积分10
5秒前
5秒前
LD完成签到 ,获得积分10
6秒前
liuying发布了新的文献求助10
6秒前
6秒前
英俊的铭应助搞怪人雄采纳,获得10
6秒前
萌酱发布了新的文献求助10
7秒前
爱科研完成签到,获得积分10
7秒前
Jasper应助橘子海采纳,获得10
7秒前
yuyumi发布了新的文献求助10
8秒前
8秒前
华仔应助磷钼酸奎琳采纳,获得10
9秒前
杨杨应助pooh采纳,获得10
9秒前
开朗的草莓应助冷酷成威采纳,获得10
10秒前
开朗的草莓应助冷酷成威采纳,获得10
10秒前
xixi完成签到,获得积分10
10秒前
逐梦发布了新的文献求助10
10秒前
gxy发布了新的文献求助10
11秒前
11秒前
11秒前
杏仁核发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
愚者先生发布了新的文献求助10
12秒前
NexusExplorer应助Jan采纳,获得10
12秒前
上官卿完成签到,获得积分20
13秒前
14秒前
萌酱完成签到,获得积分10
14秒前
怡然缘分发布了新的文献求助10
15秒前
Akim应助冯琳栋采纳,获得10
16秒前
拉拉发布了新的文献求助10
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762211
求助须知:如何正确求助?哪些是违规求助? 5534714
关于积分的说明 15402511
捐赠科研通 4898495
什么是DOI,文献DOI怎么找? 2634891
邀请新用户注册赠送积分活动 1583051
关于科研通互助平台的介绍 1538203