TCP-ARMA: A Tensor-Variate Time Series Forecasting Method

张量(固有定义) 坐标下降 自回归滑动平均模型 时间序列 计算机科学 估计员 算法 随机变量 降维 系列(地层学) 数学 人工智能 数学优化 自回归模型 机器学习 统计 古生物学 生物 随机变量 纯数学
作者
Yu An,Di Wang,Lili Chen,Xi Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2023.3322298
摘要

Analysis of complex data structures in the form of matrix or tensor format data has gained immense popularity in diverse fields. However, forecasting time series based on high-order historical tensor data presents significant challenges due to the huge number of parameters derived by the high-dimensional nature of these data. Traditional time series models, designed for scalar or vector data, are insufficient for handling such data, necessitating the development of novel techniques to tackle these challenges. To address this issue, we propose a Tensor-variate method with Compressed Parameters in Auto-Regressive Moving Average (TCP-ARMA) model for time series forecasting, which integrates a smoothed mean and a tensor-variate autoregressive moving average (ARMA) model with a parameter reduction technique. The proposed method captures the global trend within each dimension of tensors as well as the time-dimension by a tensor-based smoothed mean. The high-order parameters, commonly with tremendous elements, are compressed into a series of factor matrices, significantly reducing computational difficulty and complexity. To solve the optimization problem efficiently and avoid the computational challenge of inverting large matrices, we have designed an algorithm named BCD-PALM that combines block coordinate descent (BCD) with proximal alternating linearized minimization (PALM). We have employed a real-world case study to validate our proposed approach, and the results demonstrate its effectiveness in addressing the challenges associated with high-dimensional tensor data. Note to Practitioners —In response to the challenges associated with capturing the evolution within high-order tensor time series data, we develop a tensor-variate time series forecasting method that incorporates a smoothed mean and a tensor-variate autoregressive moving average (ARMA) model with parameter reduction. To effectively implement this method, there are three key considerations to bear in mind. Firstly, it is crucial to ensure that sufficient historical data is available for the model training process to be completed successfully. Secondly, while we have chosen the B-spline as the smoothing method for capturing the smoothed mean, it is only one among various smoothing methods available. Depending on the specific context or scenario, alternative smoothing techniques may be more suitable. Lastly, it is essential to carefully determine the CP rank in the decomposition process, taking into account the actual compression requirements of the data being analyzed. By considering these factors, our proposed method can be tailored and optimized to address the unique challenges posed by high-order tensor time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姜积木发布了新的文献求助10
刚刚
2秒前
小星星发布了新的文献求助10
3秒前
博弈春秋发布了新的文献求助10
3秒前
4秒前
路口发布了新的文献求助10
4秒前
4秒前
4秒前
英姑应助XiaodongWang采纳,获得10
6秒前
6秒前
脑洞疼应助XiaodongWang采纳,获得10
6秒前
Benjamin完成签到,获得积分10
6秒前
艾科研发布了新的文献求助30
7秒前
华仔应助开心人达采纳,获得10
7秒前
7秒前
大笨蛋完成签到,获得积分20
7秒前
NexusExplorer应助陶醉访风采纳,获得10
8秒前
8秒前
8秒前
Benjamin发布了新的文献求助10
9秒前
ll发布了新的文献求助10
10秒前
单薄的飞松完成签到 ,获得积分20
10秒前
zzz完成签到,获得积分10
11秒前
在水一方应助顺心若魔采纳,获得10
12秒前
12秒前
姜积木完成签到 ,获得积分10
12秒前
威武鸽子发布了新的文献求助10
12秒前
彪行天下发布了新的文献求助10
12秒前
13秒前
露露发布了新的文献求助20
13秒前
无限的山水完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
武丝丝完成签到,获得积分10
17秒前
ccc完成签到,获得积分10
17秒前
18秒前
开心人达发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070