亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TCP-ARMA: A Tensor-Variate Time Series Forecasting Method

张量(固有定义) 坐标下降 自回归滑动平均模型 时间序列 计算机科学 估计员 算法 随机变量 降维 系列(地层学) 数学 人工智能 数学优化 自回归模型 机器学习 统计 古生物学 生物 随机变量 纯数学
作者
Yu An,Di Wang,Lili Chen,Xi Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2023.3322298
摘要

Analysis of complex data structures in the form of matrix or tensor format data has gained immense popularity in diverse fields. However, forecasting time series based on high-order historical tensor data presents significant challenges due to the huge number of parameters derived by the high-dimensional nature of these data. Traditional time series models, designed for scalar or vector data, are insufficient for handling such data, necessitating the development of novel techniques to tackle these challenges. To address this issue, we propose a Tensor-variate method with Compressed Parameters in Auto-Regressive Moving Average (TCP-ARMA) model for time series forecasting, which integrates a smoothed mean and a tensor-variate autoregressive moving average (ARMA) model with a parameter reduction technique. The proposed method captures the global trend within each dimension of tensors as well as the time-dimension by a tensor-based smoothed mean. The high-order parameters, commonly with tremendous elements, are compressed into a series of factor matrices, significantly reducing computational difficulty and complexity. To solve the optimization problem efficiently and avoid the computational challenge of inverting large matrices, we have designed an algorithm named BCD-PALM that combines block coordinate descent (BCD) with proximal alternating linearized minimization (PALM). We have employed a real-world case study to validate our proposed approach, and the results demonstrate its effectiveness in addressing the challenges associated with high-dimensional tensor data. Note to Practitioners —In response to the challenges associated with capturing the evolution within high-order tensor time series data, we develop a tensor-variate time series forecasting method that incorporates a smoothed mean and a tensor-variate autoregressive moving average (ARMA) model with parameter reduction. To effectively implement this method, there are three key considerations to bear in mind. Firstly, it is crucial to ensure that sufficient historical data is available for the model training process to be completed successfully. Secondly, while we have chosen the B-spline as the smoothing method for capturing the smoothed mean, it is only one among various smoothing methods available. Depending on the specific context or scenario, alternative smoothing techniques may be more suitable. Lastly, it is essential to carefully determine the CP rank in the decomposition process, taking into account the actual compression requirements of the data being analyzed. By considering these factors, our proposed method can be tailored and optimized to address the unique challenges posed by high-order tensor time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
瀛瀛完成签到 ,获得积分10
4秒前
LK完成签到 ,获得积分10
5秒前
alien52发布了新的文献求助10
5秒前
谁将新樽乘旧月完成签到 ,获得积分10
9秒前
10秒前
共享精神应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得30
14秒前
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
传奇3应助爱读书的嘟嘟采纳,获得10
23秒前
27秒前
11111发布了新的文献求助10
33秒前
11111完成签到,获得积分10
40秒前
大模型应助傻傻的修洁采纳,获得10
41秒前
小米完成签到,获得积分10
42秒前
zly完成签到 ,获得积分10
46秒前
zhl完成签到,获得积分10
47秒前
打打应助wang5945采纳,获得10
49秒前
泠风来完成签到,获得积分10
53秒前
啊黑虎爸爸完成签到,获得积分20
1分钟前
1分钟前
天大青年完成签到,获得积分20
1分钟前
Jalason完成签到,获得积分10
1分钟前
1分钟前
leave完成签到 ,获得积分10
1分钟前
Orange应助大可奇采纳,获得10
1分钟前
捉住一只羊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
大可奇完成签到,获得积分10
1分钟前
忐忑的小玉完成签到,获得积分10
1分钟前
大可奇发布了新的文献求助10
1分钟前
1分钟前
大模型应助啊黑虎爸爸采纳,获得30
1分钟前
烟花应助JJ采纳,获得10
1分钟前
白华苍松发布了新的文献求助20
1分钟前
小星星完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801865
关于积分的说明 7845847
捐赠科研通 2459209
什么是DOI,文献DOI怎么找? 1309091
科研通“疑难数据库(出版商)”最低求助积分说明 628651
版权声明 601727