TCP-ARMA: A Tensor-Variate Time Series Forecasting Method

张量(固有定义) 坐标下降 自回归滑动平均模型 时间序列 计算机科学 估计员 算法 随机变量 降维 系列(地层学) 数学 人工智能 数学优化 自回归模型 机器学习 统计 随机变量 古生物学 生物 纯数学
作者
Yu An,Di Wang,Lili Chen,Xi Zhang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2023.3322298
摘要

Analysis of complex data structures in the form of matrix or tensor format data has gained immense popularity in diverse fields. However, forecasting time series based on high-order historical tensor data presents significant challenges due to the huge number of parameters derived by the high-dimensional nature of these data. Traditional time series models, designed for scalar or vector data, are insufficient for handling such data, necessitating the development of novel techniques to tackle these challenges. To address this issue, we propose a Tensor-variate method with Compressed Parameters in Auto-Regressive Moving Average (TCP-ARMA) model for time series forecasting, which integrates a smoothed mean and a tensor-variate autoregressive moving average (ARMA) model with a parameter reduction technique. The proposed method captures the global trend within each dimension of tensors as well as the time-dimension by a tensor-based smoothed mean. The high-order parameters, commonly with tremendous elements, are compressed into a series of factor matrices, significantly reducing computational difficulty and complexity. To solve the optimization problem efficiently and avoid the computational challenge of inverting large matrices, we have designed an algorithm named BCD-PALM that combines block coordinate descent (BCD) with proximal alternating linearized minimization (PALM). We have employed a real-world case study to validate our proposed approach, and the results demonstrate its effectiveness in addressing the challenges associated with high-dimensional tensor data. Note to Practitioners —In response to the challenges associated with capturing the evolution within high-order tensor time series data, we develop a tensor-variate time series forecasting method that incorporates a smoothed mean and a tensor-variate autoregressive moving average (ARMA) model with parameter reduction. To effectively implement this method, there are three key considerations to bear in mind. Firstly, it is crucial to ensure that sufficient historical data is available for the model training process to be completed successfully. Secondly, while we have chosen the B-spline as the smoothing method for capturing the smoothed mean, it is only one among various smoothing methods available. Depending on the specific context or scenario, alternative smoothing techniques may be more suitable. Lastly, it is essential to carefully determine the CP rank in the decomposition process, taking into account the actual compression requirements of the data being analyzed. By considering these factors, our proposed method can be tailored and optimized to address the unique challenges posed by high-order tensor time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mq完成签到,获得积分10
刚刚
刚刚
QWER完成签到,获得积分10
1秒前
徐新雨完成签到,获得积分10
1秒前
怡然雁凡完成签到,获得积分10
1秒前
一枚小汤圆完成签到,获得积分10
1秒前
1秒前
西早07完成签到,获得积分10
1秒前
dh完成签到,获得积分10
3秒前
222123完成签到,获得积分10
3秒前
星辰大海应助张瑞雪采纳,获得10
3秒前
4秒前
4秒前
天天快乐应助方舟花采纳,获得10
4秒前
Rener完成签到 ,获得积分10
5秒前
zhuxd发布了新的文献求助10
5秒前
吹泡泡的红豆完成签到 ,获得积分10
5秒前
冰激凌UP发布了新的文献求助10
5秒前
5秒前
Jaslin发布了新的文献求助10
5秒前
Alinf发布了新的文献求助10
6秒前
王QQ完成签到 ,获得积分10
6秒前
zwy完成签到 ,获得积分10
7秒前
小二郎应助失眠煎饼采纳,获得10
7秒前
8秒前
zoe完成签到,获得积分10
8秒前
9秒前
XY完成签到,获得积分20
9秒前
9秒前
HaHa完成签到,获得积分10
9秒前
ycsqz发布了新的文献求助10
10秒前
鲜艳的手链完成签到,获得积分10
10秒前
10秒前
小李子完成签到 ,获得积分10
10秒前
良菵发布了新的文献求助10
11秒前
11秒前
11秒前
科目三应助grzzz采纳,获得10
13秒前
爆米花应助哈基米采纳,获得10
14秒前
Owen应助wzf123456采纳,获得10
14秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
The Data Economy: Tools and Applications 1000
Diamonds: Properties, Synthesis and Applications 800
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3095943
求助须知:如何正确求助?哪些是违规求助? 2747836
关于积分的说明 7596995
捐赠科研通 2399476
什么是DOI,文献DOI怎么找? 1273093
科研通“疑难数据库(出版商)”最低求助积分说明 615534
版权声明 598948