Process Analysis and Topography Evaluation for Monocrystalline Silicon Laser Cutting-Off

机械加工 单晶硅 沟槽(工程) 材料科学 脆性 激光器 薄脆饼 激光切割 炸薯条 复合材料 光学 冶金 机械工程 光电子学 工程类 物理 电气工程
作者
Fei Liu,Aiwu Yu,Chongjun Wu,Steven Y. Liang
出处
期刊:Micromachines [MDPI AG]
卷期号:14 (8): 1542-1542 被引量:2
标识
DOI:10.3390/mi14081542
摘要

Due to the characteristics of high brittleness and low fracture toughness of monocrystalline silicon, its high precision and high-quality cutting have great challenges. Aiming at the urgent need of wafer cutting with high efficiency, this paper investigates the influence law of different laser processes on the size of the groove and the machining affected zone of laser cutting. The experimental results show that when laser cutting monocrystalline silicon, in addition to generating a groove, there will also be a machining affected zone on both sides of the groove and the size of both will directly affect the cutting quality. After wiping the thermal products generated by cutting on the material surface, the machining affected zone and the recast layer in the cutting seam can basically be eliminated to generate a wider cutting seam and the surface after wiping is basically the same as that before cutting. Increasing the laser cutting times will increase the width of the material's machining affected zone and the groove width after chip removal. When the cutting times are less than 80, increasing the cutting times will increase the groove width at the same time; but, after the cutting times exceed 80, the groove width abruptly decreases and then slowly increases. In addition, the lower the laser scanning speed, the larger the width of the material's machining affected zone and the width of the groove after chip removal. The increase in laser frequency will increase the crack width and the crack width after chip removal but decrease the machining affected zone width. The laser pulse width has a certain effect on the cutting quality but it does not show regularity. When the pulse width is 0.3 ns the cutting quality is the best and when the pulse width is 0.15 ns the cutting quality is the worst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆思柔完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
脑洞疼应助Xu采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
Dddd发布了新的文献求助10
2秒前
xx完成签到,获得积分20
2秒前
BEIBEI完成签到,获得积分10
2秒前
liyi发布了新的文献求助10
2秒前
苗条的山晴完成签到,获得积分10
2秒前
3秒前
mm完成签到,获得积分10
4秒前
JUll发布了新的文献求助10
4秒前
无奈抽屉完成签到 ,获得积分10
4秒前
4秒前
5秒前
风中的夏兰完成签到,获得积分10
5秒前
czt完成签到,获得积分10
5秒前
研友_nPPERn发布了新的文献求助10
5秒前
6秒前
温柔若发布了新的文献求助10
6秒前
ry发布了新的文献求助10
6秒前
gms发布了新的文献求助10
6秒前
Owen应助judy采纳,获得30
6秒前
Zifflie完成签到,获得积分10
6秒前
7秒前
7秒前
xuanxuan发布了新的文献求助10
7秒前
keigo发布了新的文献求助10
7秒前
xqwwqx发布了新的文献求助10
7秒前
fay完成签到,获得积分10
8秒前
毛儿豆儿完成签到,获得积分10
8秒前
马铃薯发布了新的文献求助10
8秒前
帅玉玉发布了新的文献求助10
8秒前
MADKAI发布了新的文献求助10
8秒前
老詹头完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678