Assessment of machine learning-based methods predictive suitability for migration pollutants from microplastics degradation

微塑料 支持向量机 人工神经网络 机器学习 浸出(土壤学) 污染物 环境科学 人工智能 污染 增塑剂 随机森林 计算机科学 环境化学 工程类 化学 土壤科学 土壤水分 生态学 生物 有机化学 化学工程
作者
Małgorzata Kida,Kamil Pochwat,Sabina Ziembowicz
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:461: 132565-132565 被引量:21
标识
DOI:10.1016/j.jhazmat.2023.132565
摘要

The aim of the work was to assess the usefulness of machine learning in predicting the migration of pollutants from microplastics. The search for methods to reduce unnecessary laboratory analyzes is a necessary action both to protect the environment and from an economic perspective. Multiple regression, artificial neural networks, support vector method and random forest regression were used in the study to predict leaching of plasticizers and other contaminants from microplastics. The development of the methods were based on the results of laboratory tests obtained by the GC-MS method. The results obtained confirm the potential of artificial neural networks and the support vector method for effective modelling and prediction of chemical compounds leached from microplastics. Correlation results were obtained for the analyzed parameters between the data obtained in the model and laboratory data in the range of 0.96–0.98 and 0.93–0.99 for artificial neural networks and the support vector method, respectively. Multiple regression showed the lowest performance in all cases in predicting plastic phthalic acid esters (coefficient of determination (R2) in the range of 0.03–0.24). The results presented in this paper will provide new insight into the influence of different parameters and factors on the leaching of plastic additives. This information is necessary to assess the harmfulness of these materials. The collected data is unique on a global scale. For the first time, machine learning were used to predict the leaching rate of plasticizers from different polymers under different environmental conditions. The use of machine learning allows to reduce unnecessary laboratory tests and reduce costs and protect the environment. Currently, there are no research results in this field in the scientific literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土里刨星星的鱼完成签到,获得积分20
刚刚
Ava应助sun采纳,获得30
2秒前
miss完成签到,获得积分10
3秒前
hu完成签到 ,获得积分10
4秒前
mathmotive完成签到,获得积分10
5秒前
白大褂完成签到,获得积分10
6秒前
6秒前
6秒前
小马甲应助孙淳采纳,获得10
8秒前
8秒前
科研通AI5应助二二二采纳,获得10
8秒前
赘婿应助尘林采纳,获得10
9秒前
HPP123完成签到,获得积分10
11秒前
12秒前
YYJ25发布了新的文献求助10
13秒前
liyuchen发布了新的文献求助10
13秒前
侦察兵发布了新的文献求助10
13秒前
15秒前
Owen应助TT采纳,获得10
15秒前
kid1912发布了新的文献求助50
15秒前
孙淳发布了新的文献求助10
19秒前
20秒前
20秒前
伯赏诗霜发布了新的文献求助10
20秒前
21秒前
21秒前
程哲瀚完成签到,获得积分10
21秒前
Brennan完成签到,获得积分10
22秒前
23秒前
23秒前
笨笨善若发布了新的文献求助10
24秒前
24秒前
25秒前
樘樘完成签到,获得积分10
25秒前
一个有点长的序完成签到 ,获得积分10
26秒前
孙淳完成签到,获得积分10
27秒前
27秒前
YYJ25发布了新的文献求助10
28秒前
Jzhang应助tmpstlml采纳,获得10
29秒前
微笑的南露完成签到 ,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849