医学
专业
工作流程
机器视觉
人工智能
卷积神经网络
喉镜检查
医学物理学
插管
机器学习
计算机科学
外科
病理
数据库
作者
Hannah Lonsdale,Geoffrey Gray,Luis Ahumada,Clyde Matava
标识
DOI:10.1213/ane.0000000000006679
摘要
Machine vision describes the use of artificial intelligence to interpret, analyze, and derive predictions from image or video data. Machine vision-based techniques are already in clinical use in radiology, ophthalmology, and dermatology, where some applications currently equal or exceed the performance of specialty physicians in areas of image interpretation. While machine vision in anesthesia has many potential applications, its development remains in its infancy in our specialty. Early research for machine vision in anesthesia has focused on automated recognition of anatomical structures during ultrasound-guided regional anesthesia or line insertion; recognition of the glottic opening and vocal cords during video laryngoscopy; prediction of the difficult airway using facial images; and clinical alerts for endobronchial intubation detected on chest radiograph. Current machine vision applications measuring the distance between endotracheal tube tip and carina have demonstrated noninferior performance compared to board-certified physicians. The performance and potential uses of machine vision for anesthesia will only grow with the advancement of underlying machine vision algorithm technical performance developed outside of medicine, such as convolutional neural networks and transfer learning. This article summarizes recently published works of interest, provides a brief overview of techniques used to create machine vision applications, explains frequently used terms, and discusses challenges the specialty will encounter as we embrace the advantages that this technology may bring to future clinical practice and patient care. As machine vision emerges onto the clinical stage, it is critically important that anesthesiologists are prepared to confidently assess which of these devices are safe, appropriate, and bring added value to patient care.
科研通智能强力驱动
Strongly Powered by AbleSci AI