亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Vision and Image Analysis in Anesthesia: Narrative Review and Future Prospects

医学 专业 工作流程 机器视觉 人工智能 卷积神经网络 喉镜检查 医学物理学 插管 机器学习 计算机科学 外科 病理 数据库
作者
Hannah Lonsdale,Geoffrey Gray,Luis Ahumada,Clyde Matava
出处
期刊:Anesthesia & Analgesia [Ovid Technologies (Wolters Kluwer)]
卷期号:137 (4): 830-840 被引量:4
标识
DOI:10.1213/ane.0000000000006679
摘要

Machine vision describes the use of artificial intelligence to interpret, analyze, and derive predictions from image or video data. Machine vision-based techniques are already in clinical use in radiology, ophthalmology, and dermatology, where some applications currently equal or exceed the performance of specialty physicians in areas of image interpretation. While machine vision in anesthesia has many potential applications, its development remains in its infancy in our specialty. Early research for machine vision in anesthesia has focused on automated recognition of anatomical structures during ultrasound-guided regional anesthesia or line insertion; recognition of the glottic opening and vocal cords during video laryngoscopy; prediction of the difficult airway using facial images; and clinical alerts for endobronchial intubation detected on chest radiograph. Current machine vision applications measuring the distance between endotracheal tube tip and carina have demonstrated noninferior performance compared to board-certified physicians. The performance and potential uses of machine vision for anesthesia will only grow with the advancement of underlying machine vision algorithm technical performance developed outside of medicine, such as convolutional neural networks and transfer learning. This article summarizes recently published works of interest, provides a brief overview of techniques used to create machine vision applications, explains frequently used terms, and discusses challenges the specialty will encounter as we embrace the advantages that this technology may bring to future clinical practice and patient care. As machine vision emerges onto the clinical stage, it is critically important that anesthesiologists are prepared to confidently assess which of these devices are safe, appropriate, and bring added value to patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaogaogao完成签到,获得积分10
13秒前
34秒前
yu发布了新的文献求助30
39秒前
44秒前
大鱼发布了新的文献求助20
56秒前
xiawanren00完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
囚徒发布了新的文献求助10
1分钟前
digger2023完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
852应助夏末采纳,获得10
3分钟前
3分钟前
席江海完成签到,获得积分10
3分钟前
谢小盟完成签到 ,获得积分10
3分钟前
3分钟前
爱科研的小周完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
夏末发布了新的文献求助10
4分钟前
夏末完成签到,获得积分10
4分钟前
5分钟前
5分钟前
jwq发布了新的文献求助10
5分钟前
jwq完成签到,获得积分10
5分钟前
efren1806完成签到,获得积分10
5分钟前
6分钟前
陈陈发布了新的文献求助10
6分钟前
赘婿应助陈陈采纳,获得10
6分钟前
完美世界应助cacaldon采纳,获得10
7分钟前
CipherSage应助科研通管家采纳,获得10
7分钟前
爆米花应助科研通管家采纳,获得10
7分钟前
BCKT完成签到,获得积分10
7分钟前
8分钟前
姚老表完成签到,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000782
关于积分的说明 8793674
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471938
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313