Classification and prediction of Klebsiella pneumoniae strains with different MLST allelic profiles via SERS spectral analysis

多位点序列分型 肺炎克雷伯菌 打字 管家基因 生物 系统发育树 全基因组测序 微生物学 细菌基因组大小 计算生物学 基因组 遗传学 基因 基因型 大肠杆菌 基因表达
作者
Liyan Zhang,Benshun Tian,Yaoxing Huang,Gu B,Pei Ju,Yuyan Luo,Jia-Wei Tang,Liang Wang
出处
期刊:PeerJ [PeerJ]
卷期号:11: e16161-e16161 被引量:1
标识
DOI:10.7717/peerj.16161
摘要

The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of hospital-acquired (HA) and community-acquired (CA) infections, leading to great public health concern globally, while rapid identification and accurate tracing of the pathogenic bacterium is essential in facilitating monitoring and controlling of K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is a commonly used typing approach with low cost that is able to distinguish bacterial isolates based on the allelic profiles of several housekeeping genes, despite low resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST) is recently proposed to sub-type and monitor outbreaks of bacterial strains with high resolution and reliability, which uses hundreds or thousands of genes conserved in all or most members of the species. However, the method is complex and requires whole genome sequencing of bacterial strains with high costs. Therefore, it is urgently needed to develop novel methods with high resolution and low cost for bacterial typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap method for bacterial identification. Previous studies confirmed that classification and prediction of bacterial strains via SERS spectral analysis correlated well with MLST typing results. However, there is currently no similar comparative analysis in K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different sequencing typings (STs) were selected and a phylogenetic tree was constructed based on core genome analysis. SERS spectra (N = 45/each strain) were generated for all the K. pneumoniae strains, which were then comparatively classified and predicted via six representative machine learning (ML) algorithms. According to the results, SERS technique coupled with the ML algorithm support vector machine (SVM) could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of differentiating and predicting all the K. pneumoniae strains that were consistent to corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based method is able to accurately predict K. pneumoniae MLST types, which has the application potential in clinical settings for tracing dissemination and controlling outbreak of K. pneumoniae in hospitals and communities with low costs and high rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A拉拉拉完成签到,获得积分10
2秒前
是蔡同学发布了新的文献求助10
4秒前
可爱的函函应助zhang采纳,获得10
4秒前
情怀应助Umair采纳,获得10
4秒前
5秒前
smile发布了新的文献求助10
5秒前
5秒前
5秒前
深情安青应助mia采纳,获得10
6秒前
blue完成签到,获得积分10
6秒前
6秒前
李一帆完成签到 ,获得积分20
7秒前
氧化铜完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
daker完成签到 ,获得积分10
9秒前
9秒前
知不道完成签到,获得积分10
10秒前
每文关注了科研通微信公众号
10秒前
叁點水滨完成签到,获得积分10
10秒前
王者归来完成签到,获得积分10
11秒前
读研好难发布了新的文献求助10
11秒前
是蔡同学完成签到,获得积分10
11秒前
12秒前
nilu发布了新的文献求助10
12秒前
YMM完成签到,获得积分10
12秒前
部川苦茶发布了新的文献求助10
12秒前
没出门完成签到,获得积分10
12秒前
13秒前
orixero应助aaabbbccc采纳,获得10
13秒前
Wand完成签到,获得积分10
13秒前
14秒前
辣椒炒肉完成签到,获得积分20
14秒前
15秒前
谷雨发布了新的文献求助20
16秒前
18秒前
18秒前
xwq完成签到,获得积分10
18秒前
Captain发布了新的文献求助10
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260