Classification and prediction of Klebsiella pneumoniae strains with different MLST allelic profiles via SERS spectral analysis

多位点序列分型 肺炎克雷伯菌 打字 管家基因 生物 系统发育树 全基因组测序 微生物学 细菌基因组大小 计算生物学 基因组 遗传学 基因 基因型 大肠杆菌 基因表达
作者
Liyan Zhang,Benshun Tian,Yaoxing Huang,Gu B,Pei Ju,Yuyan Luo,Jia-Wei Tang,Liang Wang
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e16161-e16161 被引量:1
标识
DOI:10.7717/peerj.16161
摘要

The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of hospital-acquired (HA) and community-acquired (CA) infections, leading to great public health concern globally, while rapid identification and accurate tracing of the pathogenic bacterium is essential in facilitating monitoring and controlling of K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is a commonly used typing approach with low cost that is able to distinguish bacterial isolates based on the allelic profiles of several housekeeping genes, despite low resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST) is recently proposed to sub-type and monitor outbreaks of bacterial strains with high resolution and reliability, which uses hundreds or thousands of genes conserved in all or most members of the species. However, the method is complex and requires whole genome sequencing of bacterial strains with high costs. Therefore, it is urgently needed to develop novel methods with high resolution and low cost for bacterial typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap method for bacterial identification. Previous studies confirmed that classification and prediction of bacterial strains via SERS spectral analysis correlated well with MLST typing results. However, there is currently no similar comparative analysis in K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different sequencing typings (STs) were selected and a phylogenetic tree was constructed based on core genome analysis. SERS spectra (N = 45/each strain) were generated for all the K. pneumoniae strains, which were then comparatively classified and predicted via six representative machine learning (ML) algorithms. According to the results, SERS technique coupled with the ML algorithm support vector machine (SVM) could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of differentiating and predicting all the K. pneumoniae strains that were consistent to corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based method is able to accurately predict K. pneumoniae MLST types, which has the application potential in clinical settings for tracing dissemination and controlling outbreak of K. pneumoniae in hospitals and communities with low costs and high rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
wz发布了新的文献求助10
刚刚
聪聪great完成签到,获得积分20
刚刚
谢灵运完成签到,获得积分10
1秒前
兴奋仙人掌完成签到,获得积分10
1秒前
慕青应助迅速的代桃采纳,获得10
1秒前
sugar完成签到,获得积分10
1秒前
下雨天完成签到,获得积分10
2秒前
古德猫宁完成签到,获得积分10
2秒前
2秒前
daisies应助yana采纳,获得20
2秒前
何佳易关注了科研通微信公众号
2秒前
cdgbdfbsfdvsd完成签到,获得积分10
3秒前
zero完成签到,获得积分10
4秒前
类囊体薄膜完成签到,获得积分10
4秒前
5秒前
sparks完成签到,获得积分10
5秒前
5秒前
Yuanyuan发布了新的文献求助30
6秒前
brier0218完成签到,获得积分10
6秒前
6秒前
云云完成签到,获得积分10
6秒前
心灵美复天完成签到,获得积分10
6秒前
chenyq1177完成签到 ,获得积分10
7秒前
哦豁拐咯完成签到,获得积分10
8秒前
毕业大吉完成签到,获得积分20
8秒前
糖丸完成签到,获得积分10
8秒前
颖仔完成签到,获得积分10
9秒前
doin完成签到,获得积分10
9秒前
发一篇sci完成签到 ,获得积分10
9秒前
老实皮皮虾完成签到,获得积分10
10秒前
慕青应助石头采纳,获得10
11秒前
Kins完成签到,获得积分10
11秒前
清浅发布了新的文献求助20
11秒前
王五发布了新的文献求助10
11秒前
康康米其林完成签到,获得积分10
12秒前
12秒前
王小海111完成签到 ,获得积分10
12秒前
13秒前
A阿澍完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118