亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification and prediction of Klebsiella pneumoniae strains with different MLST allelic profiles via SERS spectral analysis

多位点序列分型 肺炎克雷伯菌 打字 管家基因 生物 系统发育树 全基因组测序 微生物学 细菌基因组大小 计算生物学 基因组 遗传学 基因 基因型 大肠杆菌 基因表达
作者
Liyan Zhang,Benshun Tian,Yaoxing Huang,Gu B,Pei Ju,Yuyan Luo,Jia-Wei Tang,Liang Wang
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e16161-e16161 被引量:1
标识
DOI:10.7717/peerj.16161
摘要

The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of hospital-acquired (HA) and community-acquired (CA) infections, leading to great public health concern globally, while rapid identification and accurate tracing of the pathogenic bacterium is essential in facilitating monitoring and controlling of K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is a commonly used typing approach with low cost that is able to distinguish bacterial isolates based on the allelic profiles of several housekeeping genes, despite low resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST) is recently proposed to sub-type and monitor outbreaks of bacterial strains with high resolution and reliability, which uses hundreds or thousands of genes conserved in all or most members of the species. However, the method is complex and requires whole genome sequencing of bacterial strains with high costs. Therefore, it is urgently needed to develop novel methods with high resolution and low cost for bacterial typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap method for bacterial identification. Previous studies confirmed that classification and prediction of bacterial strains via SERS spectral analysis correlated well with MLST typing results. However, there is currently no similar comparative analysis in K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different sequencing typings (STs) were selected and a phylogenetic tree was constructed based on core genome analysis. SERS spectra (N = 45/each strain) were generated for all the K. pneumoniae strains, which were then comparatively classified and predicted via six representative machine learning (ML) algorithms. According to the results, SERS technique coupled with the ML algorithm support vector machine (SVM) could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of differentiating and predicting all the K. pneumoniae strains that were consistent to corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based method is able to accurately predict K. pneumoniae MLST types, which has the application potential in clinical settings for tracing dissemination and controlling outbreak of K. pneumoniae in hospitals and communities with low costs and high rapidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyy发布了新的文献求助10
2秒前
Shuo应助科研通管家采纳,获得20
2秒前
sc发布了新的文献求助10
14秒前
Lucas应助sc采纳,获得10
22秒前
30秒前
35秒前
荆棘鸟发布了新的文献求助10
39秒前
科研通AI5应助荆棘鸟采纳,获得10
1分钟前
荆棘鸟完成签到,获得积分10
1分钟前
1分钟前
1分钟前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
TXZ06发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Lianna发布了新的文献求助10
3分钟前
Xinying发布了新的文献求助10
3分钟前
Shuo应助科研通管家采纳,获得20
4分钟前
Shuo应助科研通管家采纳,获得20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
大模型应助Xinying采纳,获得10
4分钟前
Xinying完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
miles完成签到,获得积分10
5分钟前
吃点水果保护局完成签到 ,获得积分10
5分钟前
5分钟前
Shuo应助科研通管家采纳,获得20
6分钟前
馆长应助科研通管家采纳,获得10
6分钟前
xin完成签到,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
hhhhhhhhhh完成签到 ,获得积分10
7分钟前
XiaoLiu应助科研通管家采纳,获得20
8分钟前
8分钟前
8分钟前
8分钟前
sc发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595916
求助须知:如何正确求助?哪些是违规求助? 4008099
关于积分的说明 12408842
捐赠科研通 3686911
什么是DOI,文献DOI怎么找? 2032113
邀请新用户注册赠送积分活动 1065358
科研通“疑难数据库(出版商)”最低求助积分说明 950695