Toward Early and Accurate Network Intrusion Detection Using Graph Embedding

计算机科学 入侵检测系统 网络数据包 图形 网络安全 数据挖掘 人工智能 图嵌入 嵌入 机器学习 理论计算机科学 计算机网络
作者
Xiaoyan Hu,Wenjie Gao,Guang Cheng,Ruidong Li,Yuyang Zhou,Hua Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 5817-5831 被引量:20
标识
DOI:10.1109/tifs.2023.3318960
摘要

Early and accurate detection of network intrusions is crucial to ensure network security and stability. Existing network intrusion detection methods mainly use conventional machine learning or deep learning technology to classify intrusions based on the statistical features of network flows. The feature extraction relies on expert experience and cannot be performed until the end of network flows, which delays intrusion detection. The existing graph-based intrusion detection methods require global network traffic to construct communication graphs, which is complex and time-consuming. Besides, the existing deep learning-based and graph-based intrusion detection methods resort to massive training samples. This paper proposes Graph2vec+RF, an early and accurate network intrusion detection method based on graph embedding technology. We construct a flow graph from the initial several interactive packets for each bidirectional network flow instead, adopt graph embedding technology, graph2vec, to learn the vector representation of the flow graph and classify the graph vectors with Random Forest (RF). Graph2vec+RF automatically extracts flow graph features using subgraph structures and relies on only a small number of the initial interactive packets per bidirectional network flow without requiring massive training samples to achieve early and accurate network intrusion detection. Our experimental results on the CICIDS2017 and CICIDS2018 datasets show that our proposed Graph2vec+RF outperforms the state-of-the-art methods in terms of accuracy, recall, precision, and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助一缕炊烟照月明采纳,获得10
刚刚
1秒前
水上书发布了新的文献求助10
3秒前
3秒前
如意枫叶发布了新的文献求助10
4秒前
可耐的寒松完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
伯赏浩天完成签到,获得积分10
8秒前
8秒前
9秒前
Bottle发布了新的文献求助10
9秒前
10秒前
化作繁星完成签到,获得积分10
10秒前
伯赏浩天发布了新的文献求助10
11秒前
麻辣修勾发布了新的文献求助10
12秒前
Y_完成签到 ,获得积分10
12秒前
yyjl31发布了新的文献求助30
13秒前
17秒前
11发布了新的文献求助10
18秒前
Thea发布了新的文献求助10
19秒前
迅速的丑完成签到,获得积分10
20秒前
duoduo发布了新的文献求助10
21秒前
青松果发布了新的文献求助10
21秒前
22秒前
22秒前
英姑应助穆一手采纳,获得10
22秒前
25秒前
苯环完成签到,获得积分10
25秒前
猴面包树完成签到 ,获得积分10
28秒前
zorro3574完成签到,获得积分10
28秒前
小二郎应助Thea采纳,获得10
28秒前
大力的行云关注了科研通微信公众号
29秒前
华仔应助11采纳,获得10
30秒前
丘比特应助lalalla采纳,获得30
31秒前
31秒前
隐形的觅夏完成签到 ,获得积分10
34秒前
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994126
求助须知:如何正确求助?哪些是违规求助? 3534654
关于积分的说明 11266191
捐赠科研通 3274571
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724