量子点
铜
空位缺陷
材料科学
光催化
光化学
化学物理
密度泛函理论
激子
吸收(声学)
载流子
纳米颗粒
光电子学
光致发光
兴奋剂
催化作用
分子物理学
纳米技术
化学
计算化学
结晶学
凝聚态物理
物理
生物化学
冶金
复合材料
作者
Mengke Cai,Xin Tong,Peisen Liao,Shujie Shen,Hongyang Zhao,Xin Li,Xia Li,Huaqian Zhi,Nan Zhou,Ziqian Xue,Lei Jin,Jieyuan Li,Guangqin Li,Fan Dong,Andrei V. Kabashin,Zhiming M. Wang
出处
期刊:ACS Catalysis
日期:2023-11-17
卷期号:13 (23): 15546-15557
被引量:10
标识
DOI:10.1021/acscatal.3c03884
摘要
Defect engineering in colloidal quantum dots (QDs), a typical photocatalytic material, is promising to tailor optoelectronic properties and achieve solar-to-fuel energy conversion. However, understanding the effect of defect–defect interactions on both charge carrier and catalytic dynamics is still challenging. Here, we report a class of defect-engineered copper-deficient Zn-doped CuInS2 (ZCIS) QDs that synergistically utilize copper vacancy and Cu2+ defect states to realize CO2 photoreduction. Steady and transient optical characterizations reveal that the density of copper vacancy can manipulate the distribution of optically active Cu+ and Cu2+ defect states (appearing as CuIn″ and CuCu• species, respectively), wherein the Cu+ defect states suppress interband absorption and sharpen the Shockley–Read–Hall recombination, while Cu2+ defect states enable the prolonged exciton lifetime of QDs. In situ infrared spectroscopic investigation and theoretical density functional calculation demonstrate the photoactive Cu2+ defect states nearby the copper vacancy in ZCIS QDs can effectively activate CO2 to the COOH* intermediates, leading to a remarkable photocatalytic CO production rate up to 532.3 μmol g–1 h–1 (turnover number ∼1963) after 120 h illumination.
科研通智能强力驱动
Strongly Powered by AbleSci AI