Investigation on coal/coal gangue mixtures co-combustion via TG-DSC tests, multicomponent reaction model, and artificial neural network

燃烧 热重分析 煤燃烧产物 化学 活化能 化学工程 混合(物理) 煤矸石 废物管理 材料科学 有机化学 物理化学 工程类 量子力学 物理
作者
Mingqiu Wu,Haitao Li,Liang Wang,Shan Feng,Yu Wang,Ning Yang,Kai Wang,Minggao Yu
出处
期刊:Fuel [Elsevier]
卷期号:359: 130443-130443 被引量:3
标识
DOI:10.1016/j.fuel.2023.130443
摘要

Coal gangue (CG) is the main hazardous solid waste produced during coal mining activities; it increases the combustion risk of coal/coal gangue (C/CG) mixtures. In the present work, the combustion characteristics, interactions, combustion reaction model, and kinetic parameters of C/CG co-combustion were investigated under seven different mixing ratios. Thermogravimetric data revealed that the mixture of 70 % coal and 30 % CG exhibited the most strongest synergistic effect and heat release capability, whereas that with 30 % coal and 70 % CG showed the most strongest inhibitory effect. Additionally, a multicomponent combustion reaction model for coal/CG mixture co-combustion was established. We found that the three-component combustion reaction model could appropriately describe the combustion process of C/CG mixtures. Furthermore, as the CG ratio increased to 90 %, the reaction participation of volatile and inorganic matter gradually increased, whereas that of organic matter gradually decreased. The impact of CG content on the activation energy of the reaction system depends on the conversion rate. Finally, the temperature-increasing rate, mixing ratio, and finishing temperature were considered as the import data, artificial neural network (ANN) prediction was performed based on the thermogravimetric data, results show ANN-42 (3 × 9 × 17 × 1) model was the most appropriate for predicting the co-combustion of coal/CG mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性雨柏完成签到,获得积分10
1秒前
1秒前
4秒前
5秒前
wsd完成签到,获得积分10
5秒前
高高诗柳完成签到 ,获得积分10
6秒前
lynnie发布了新的文献求助10
7秒前
打打应助Yolo采纳,获得10
7秒前
丰知然应助will采纳,获得10
8秒前
飞飞完成签到,获得积分10
9秒前
兴奋硬币发布了新的文献求助10
10秒前
10秒前
静然发布了新的文献求助10
10秒前
10秒前
踏实的寒烟完成签到,获得积分20
12秒前
冯不言完成签到,获得积分10
13秒前
13秒前
顾矜应助智慧金刚采纳,获得10
14秒前
Khr1stINK发布了新的文献求助10
14秒前
15秒前
15秒前
兴奋硬币完成签到,获得积分10
16秒前
油麦菜发布了新的文献求助10
16秒前
姝飞糊涂发布了新的文献求助10
19秒前
秀丽的曼雁完成签到,获得积分10
21秒前
estella完成签到,获得积分10
23秒前
23秒前
虚幻的夜天完成签到 ,获得积分10
24秒前
24秒前
25秒前
28秒前
awu发布了新的文献求助10
29秒前
我是老大应助123采纳,获得10
32秒前
12321234完成签到,获得积分10
32秒前
33秒前
34秒前
WeiXu驳回了wanci应助
34秒前
元寄灵发布了新的文献求助10
34秒前
诚心的敏发布了新的文献求助10
38秒前
Lucas应助如来采纳,获得10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313855
求助须知:如何正确求助?哪些是违规求助? 2946137
关于积分的说明 8528616
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434035
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650691