已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adversarial Learning-based Data Augmentation for Palm-vein Identification

过度拟合 计算机科学 分类器(UML) 人工智能 机器学习 模式识别(心理学) 卷积神经网络 潜变量 人工神经网络
作者
Huafeng Qin,Haofei Xi,Yantao Li,Mounîm El Yacoubi,Jun Wang,Xinbo Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4325-4341 被引量:4
标识
DOI:10.1109/tcsvt.2023.3334825
摘要

Palm-vein identification is a highly secure pattern biometrics that has become an active research area in recent years. Despite the recent progress in deep neural networks (DNNs) for vein identification, existing solutions for feature representation continue to lack robustness due to the limited training samples. To address this limitation, data augmentation approaches, including Generative Adversarial Networks (GANs), have been investigated, but these schemes suffer from the following issues. First, it is practically unfeasible to use all the generated samples for classifier training due to the limited storage space and computation resources. Further, some of these generated samples may be non-representative or ineffective, seriously compromising models' generalization capabilities. Second, the augmented dataset is fed to the target classifier repeatedly, resulting in overfitting after substantial training epochs. To tackle the above problems, we propose AdveinAU, an Adversarial vein AUtomatic AUgmentation approach that generates challenging samples to train a more robust vein classifier for palm-vein identification by alternatively optimizing the vein classifier and a set of latent variables. First, we consider a conditional deep convolution generative adversarial net (cDCGAN) to learn the distribution of real data and the generated data, and then a latent variable from the latent variable space is mapped to the sample space. Second, we combine the trained generator with the vein classifier to constitute AdveinAU, where the input sets of the generator and the classifier are alternatively updated by adversarial training. Specifically, a latent variable set is learned to increase the training loss of a target network through generating adversarial samples, while the classifier learns more robust features from harder examples to improve the generalization. To avoid collapsing inherent meanings of images, an exponential moving average (EMA) teacher and cosine similarity are employed for regularization to reduce the search space. Unlike previous works where GANs synthesize new realistic images, our model aims to search a latent variable set, based on which the generator can produce challenging samples along with the training process to improve the classifier's performance. Finally, we conduct extensive experiments on three public palm-vein datasets to evaluate the performance of AdveinAU, and the experimental results demonstrate that the proposed AdveinAU is capable of generating harder samples to improve the performance of the vein classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助梅赛德斯奔驰采纳,获得10
2秒前
JamesPei应助Aroma采纳,获得10
2秒前
于冰清发布了新的文献求助10
3秒前
5秒前
和谐诗双完成签到 ,获得积分10
8秒前
时光发布了新的文献求助10
11秒前
12秒前
circlez19完成签到,获得积分10
12秒前
梅赛德斯奔驰完成签到,获得积分10
15秒前
gexzygg完成签到,获得积分0
15秒前
所所应助等乙天采纳,获得10
16秒前
琳666完成签到,获得积分10
16秒前
16秒前
吴迪完成签到,获得积分20
17秒前
Wiz111发布了新的文献求助10
18秒前
狂野的尔冬完成签到 ,获得积分10
19秒前
虚心海燕完成签到,获得积分10
20秒前
万邦德完成签到,获得积分10
23秒前
王小雨完成签到 ,获得积分10
23秒前
24秒前
123完成签到 ,获得积分10
25秒前
Wiz111完成签到,获得积分10
26秒前
Fxy完成签到 ,获得积分10
27秒前
走啊走完成签到,获得积分10
29秒前
30秒前
MrZ1完成签到,获得积分10
31秒前
Owen应助默默善愁采纳,获得10
33秒前
CipherSage应助默默善愁采纳,获得10
33秒前
我是老大应助默默善愁采纳,获得10
33秒前
七月流火应助默默善愁采纳,获得100
33秒前
年鱼精完成签到 ,获得积分10
33秒前
高高菠萝完成签到 ,获得积分10
35秒前
充电宝应助shen采纳,获得10
36秒前
43秒前
zhuangbaobao发布了新的文献求助10
44秒前
欧克欧克发布了新的文献求助10
46秒前
研友_VZG7GZ应助舒服的甜瓜采纳,获得10
47秒前
小二郎应助XWH采纳,获得10
58秒前
59秒前
天天快乐应助欧克欧克采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538412
求助须知:如何正确求助?哪些是违规求助? 4625561
关于积分的说明 14596411
捐赠科研通 4566146
什么是DOI,文献DOI怎么找? 2503005
邀请新用户注册赠送积分活动 1481293
关于科研通互助平台的介绍 1452563