Adversarial Learning-based Data Augmentation for Palm-vein Identification

过度拟合 计算机科学 分类器(UML) 人工智能 机器学习 模式识别(心理学) 卷积神经网络 潜变量 人工神经网络
作者
Huafeng Qin,Haofei Xi,Yantao Li,Mounîm El Yacoubi,Jun Wang,Xinbo Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4325-4341 被引量:4
标识
DOI:10.1109/tcsvt.2023.3334825
摘要

Palm-vein identification is a highly secure pattern biometrics that has become an active research area in recent years. Despite the recent progress in deep neural networks (DNNs) for vein identification, existing solutions for feature representation continue to lack robustness due to the limited training samples. To address this limitation, data augmentation approaches, including Generative Adversarial Networks (GANs), have been investigated, but these schemes suffer from the following issues. First, it is practically unfeasible to use all the generated samples for classifier training due to the limited storage space and computation resources. Further, some of these generated samples may be non-representative or ineffective, seriously compromising models' generalization capabilities. Second, the augmented dataset is fed to the target classifier repeatedly, resulting in overfitting after substantial training epochs. To tackle the above problems, we propose AdveinAU, an Adversarial vein AUtomatic AUgmentation approach that generates challenging samples to train a more robust vein classifier for palm-vein identification by alternatively optimizing the vein classifier and a set of latent variables. First, we consider a conditional deep convolution generative adversarial net (cDCGAN) to learn the distribution of real data and the generated data, and then a latent variable from the latent variable space is mapped to the sample space. Second, we combine the trained generator with the vein classifier to constitute AdveinAU, where the input sets of the generator and the classifier are alternatively updated by adversarial training. Specifically, a latent variable set is learned to increase the training loss of a target network through generating adversarial samples, while the classifier learns more robust features from harder examples to improve the generalization. To avoid collapsing inherent meanings of images, an exponential moving average (EMA) teacher and cosine similarity are employed for regularization to reduce the search space. Unlike previous works where GANs synthesize new realistic images, our model aims to search a latent variable set, based on which the generator can produce challenging samples along with the training process to improve the classifier's performance. Finally, we conduct extensive experiments on three public palm-vein datasets to evaluate the performance of AdveinAU, and the experimental results demonstrate that the proposed AdveinAU is capable of generating harder samples to improve the performance of the vein classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南方姑娘发布了新的文献求助10
刚刚
LJQ发布了新的文献求助10
1秒前
李龙玮发布了新的文献求助10
2秒前
GeTai完成签到 ,获得积分10
3秒前
QQQ应助学术垃圾采纳,获得10
4秒前
ED应助金爱玲采纳,获得30
4秒前
木木木发布了新的文献求助10
4秒前
Akim应助try一try采纳,获得10
5秒前
丁义博完成签到,获得积分10
6秒前
6秒前
6秒前
丘比特应助katsuras采纳,获得10
8秒前
Ling完成签到 ,获得积分10
9秒前
新威宝贝发布了新的文献求助10
10秒前
11秒前
12秒前
彭于彦祖应助科研蚂蚁采纳,获得30
12秒前
王子发布了新的文献求助10
14秒前
yu发布了新的文献求助10
15秒前
15秒前
充电宝应助皮夏寒采纳,获得10
16秒前
新威宝贝完成签到,获得积分10
16秒前
jake768786发布了新的文献求助10
17秒前
kk发布了新的文献求助30
19秒前
风清扬发布了新的文献求助10
19秒前
等风来完成签到 ,获得积分10
19秒前
天天快乐应助mozhizhi采纳,获得10
19秒前
精灵大夫完成签到,获得积分10
20秒前
21秒前
机智听云发布了新的文献求助10
21秒前
jake768786完成签到,获得积分10
22秒前
yu完成签到,获得积分10
22秒前
叶喵喵发布了新的文献求助10
24秒前
杨茜然完成签到 ,获得积分10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得30
25秒前
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得30
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010191
求助须知:如何正确求助?哪些是违规求助? 3550174
关于积分的说明 11305110
捐赠科研通 3284653
什么是DOI,文献DOI怎么找? 1810748
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451