已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adversarial Learning-based Data Augmentation for Palm-vein Identification

过度拟合 计算机科学 分类器(UML) 人工智能 机器学习 模式识别(心理学) 卷积神经网络 潜变量 人工神经网络
作者
Huafeng Qin,Haofei Xi,Yantao Li,Mounîm El Yacoubi,Jun Wang,Xinbo Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4325-4341 被引量:4
标识
DOI:10.1109/tcsvt.2023.3334825
摘要

Palm-vein identification is a highly secure pattern biometrics that has become an active research area in recent years. Despite the recent progress in deep neural networks (DNNs) for vein identification, existing solutions for feature representation continue to lack robustness due to the limited training samples. To address this limitation, data augmentation approaches, including Generative Adversarial Networks (GANs), have been investigated, but these schemes suffer from the following issues. First, it is practically unfeasible to use all the generated samples for classifier training due to the limited storage space and computation resources. Further, some of these generated samples may be non-representative or ineffective, seriously compromising models' generalization capabilities. Second, the augmented dataset is fed to the target classifier repeatedly, resulting in overfitting after substantial training epochs. To tackle the above problems, we propose AdveinAU, an Adversarial vein AUtomatic AUgmentation approach that generates challenging samples to train a more robust vein classifier for palm-vein identification by alternatively optimizing the vein classifier and a set of latent variables. First, we consider a conditional deep convolution generative adversarial net (cDCGAN) to learn the distribution of real data and the generated data, and then a latent variable from the latent variable space is mapped to the sample space. Second, we combine the trained generator with the vein classifier to constitute AdveinAU, where the input sets of the generator and the classifier are alternatively updated by adversarial training. Specifically, a latent variable set is learned to increase the training loss of a target network through generating adversarial samples, while the classifier learns more robust features from harder examples to improve the generalization. To avoid collapsing inherent meanings of images, an exponential moving average (EMA) teacher and cosine similarity are employed for regularization to reduce the search space. Unlike previous works where GANs synthesize new realistic images, our model aims to search a latent variable set, based on which the generator can produce challenging samples along with the training process to improve the classifier's performance. Finally, we conduct extensive experiments on three public palm-vein datasets to evaluate the performance of AdveinAU, and the experimental results demonstrate that the proposed AdveinAU is capable of generating harder samples to improve the performance of the vein classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雅哈完成签到,获得积分10
刚刚
风中尔槐发布了新的文献求助30
3秒前
不能随便发布了新的文献求助10
3秒前
自由橘子完成签到 ,获得积分10
3秒前
叮当完成签到,获得积分10
5秒前
123完成签到 ,获得积分10
9秒前
浮游应助cc采纳,获得10
10秒前
13秒前
Manphie应助Soleil采纳,获得10
14秒前
Lemon完成签到 ,获得积分10
15秒前
hahaha发布了新的文献求助20
18秒前
21秒前
21秒前
22秒前
当当完成签到,获得积分10
23秒前
完美世界应助Elsa采纳,获得10
25秒前
nen发布了新的文献求助10
26秒前
lalalaaaa发布了新的文献求助10
27秒前
27秒前
王占雪完成签到,获得积分10
27秒前
风中尔槐完成签到,获得积分10
28秒前
科目三应助李涛采纳,获得10
28秒前
Lusteri完成签到 ,获得积分10
28秒前
小猫无极发布了新的文献求助10
29秒前
哈基米德举报岁笑求助涉嫌违规
29秒前
酷酷的数据线完成签到,获得积分10
32秒前
39秒前
传奇3应助lalalaaaa采纳,获得10
41秒前
打打应助卫小萱采纳,获得20
43秒前
秋天完成签到,获得积分10
43秒前
43秒前
张张完成签到 ,获得积分10
47秒前
50秒前
hahaha完成签到,获得积分10
50秒前
等一下就吃大米饭完成签到,获得积分10
51秒前
Liang发布了新的文献求助10
51秒前
研友_8QQlD8发布了新的文献求助10
54秒前
l0000完成签到,获得积分10
57秒前
dwaekki完成签到,获得积分10
59秒前
咚咚完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323176
求助须知:如何正确求助?哪些是违规求助? 4464596
关于积分的说明 13893209
捐赠科研通 4356045
什么是DOI,文献DOI怎么找? 2392541
邀请新用户注册赠送积分活动 1386130
关于科研通互助平台的介绍 1356085