亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new metabolic syndrome prediction model for self-evaluation as a primary screening tool in an apparently MetS-free population

医学 全国健康与营养检查调查 代谢综合征 逻辑回归 接收机工作特性 尤登J统计 人口学 体质指数 人口 全国健康访谈调查 内科学 老年学 肥胖 环境卫生 社会学
作者
Sabrina Sherman-Hahn,Elena Izkhakov,Saritte Perlman,Tomer Ziv‐Baran
出处
期刊:Preventive Medicine [Elsevier]
卷期号:175: 107701-107701 被引量:1
标识
DOI:10.1016/j.ypmed.2023.107701
摘要

Metabolic syndrome (MetS) is a growing global public health concern associated with increased morbidity and mortality. The study aimed to establish a simple self-evaluated prediction model to identify MetS. A cross-sectional study based on the American National Health and Nutrition Examination Survey database was performed. Participants aged ≥20 in the 2009–2018 surveys, with no current pregnancy or major morbidities, were included. The model was built with data from 2009 to 2016 and validated using 2017–2018 data. MetS was defined according to AHA/NHLBI guidelines. Multivariable logistic regression was applied to build a prediction model. The area under the receiver operating characteristic curve (AUC) was used to assess the discrimination ability and the maximal Youden's index was used to identify the optimal cut-off value. The study included 4245 individuals (median age 37, IQR 28–49, 51.8% females) in the training group and 911 individuals (median age 37, IQR 28–52, 52.5% females) in the validation group. Older age, male gender, non-Black race, no postsecondary education, and higher BMI were significantly associated with increased risk of MetS. The final model included age, gender, race, education, and BMI, and showed good discrimination ability (AUC = 0.810, 95% CI 0.793–0.827, sensitivity 80.4%, specificity 66.2%, positive likelihood ratio 2.379, negative likelihood ratio 0.296, PPV 59.6% and NPV 84.5%). A new model for self-evaluation may serve as a primary, easy-to-use screening tool to identify MetS in an apparently MetS-free population. A simple application may serve for primary and secondary prevention, thus enabling risk reduction in the development of cardiovascular morbidity and health expenditure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
14秒前
15秒前
20秒前
科研通AI6.1应助啵子采纳,获得10
20秒前
121发布了新的文献求助10
21秒前
熊仔一百完成签到,获得积分0
21秒前
21秒前
22秒前
L坨坨完成签到,获得积分10
23秒前
26秒前
Tang发布了新的文献求助30
27秒前
29秒前
32秒前
34秒前
35秒前
wcx完成签到,获得积分10
35秒前
39秒前
41秒前
danruolan完成签到,获得积分10
41秒前
星辰大海应助科研通管家采纳,获得10
42秒前
赘婿应助科研通管家采纳,获得10
42秒前
充电宝应助科研通管家采纳,获得10
42秒前
47秒前
寻道图强应助周周采纳,获得50
51秒前
黄果兰完成签到,获得积分10
51秒前
57秒前
Zzzzzzz完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
hhh发布了新的文献求助10
1分钟前
Miracle完成签到,获得积分10
1分钟前
Czl完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
hhh完成签到,获得积分10
1分钟前
热情的觅云完成签到 ,获得积分10
1分钟前
vanilla完成签到,获得积分10
1分钟前
啵子发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780002
求助须知:如何正确求助?哪些是违规求助? 5651336
关于积分的说明 15452646
捐赠科研通 4910879
什么是DOI,文献DOI怎么找? 2643086
邀请新用户注册赠送积分活动 1590697
关于科研通互助平台的介绍 1545154