A new metabolic syndrome prediction model for self-evaluation as a primary screening tool in an apparently MetS-free population

医学 全国健康与营养检查调查 代谢综合征 逻辑回归 接收机工作特性 尤登J统计 人口学 体质指数 人口 全国健康访谈调查 内科学 老年学 肥胖 环境卫生 社会学
作者
Sabrina Sherman-Hahn,Elena Izkhakov,Saritte Perlman,Tomer Ziv‐Baran
出处
期刊:Preventive Medicine [Elsevier]
卷期号:175: 107701-107701 被引量:1
标识
DOI:10.1016/j.ypmed.2023.107701
摘要

Metabolic syndrome (MetS) is a growing global public health concern associated with increased morbidity and mortality. The study aimed to establish a simple self-evaluated prediction model to identify MetS. A cross-sectional study based on the American National Health and Nutrition Examination Survey database was performed. Participants aged ≥20 in the 2009–2018 surveys, with no current pregnancy or major morbidities, were included. The model was built with data from 2009 to 2016 and validated using 2017–2018 data. MetS was defined according to AHA/NHLBI guidelines. Multivariable logistic regression was applied to build a prediction model. The area under the receiver operating characteristic curve (AUC) was used to assess the discrimination ability and the maximal Youden's index was used to identify the optimal cut-off value. The study included 4245 individuals (median age 37, IQR 28–49, 51.8% females) in the training group and 911 individuals (median age 37, IQR 28–52, 52.5% females) in the validation group. Older age, male gender, non-Black race, no postsecondary education, and higher BMI were significantly associated with increased risk of MetS. The final model included age, gender, race, education, and BMI, and showed good discrimination ability (AUC = 0.810, 95% CI 0.793–0.827, sensitivity 80.4%, specificity 66.2%, positive likelihood ratio 2.379, negative likelihood ratio 0.296, PPV 59.6% and NPV 84.5%). A new model for self-evaluation may serve as a primary, easy-to-use screening tool to identify MetS in an apparently MetS-free population. A simple application may serve for primary and secondary prevention, thus enabling risk reduction in the development of cardiovascular morbidity and health expenditure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xcy发布了新的文献求助10
刚刚
dd完成签到,获得积分10
刚刚
baby完成签到,获得积分10
刚刚
everyone_woo完成签到,获得积分10
4秒前
小二郎应助起名字好难采纳,获得10
4秒前
丘比特应助summuryi采纳,获得10
4秒前
小蘑菇应助平常山河采纳,获得10
4秒前
5秒前
思源应助DZQ采纳,获得10
5秒前
6秒前
6秒前
wanci应助shania采纳,获得10
7秒前
lhb完成签到,获得积分10
7秒前
丘比特应助gongsonglin采纳,获得10
7秒前
ZZ0110Z完成签到 ,获得积分10
8秒前
木歌完成签到,获得积分10
8秒前
星月夜完成签到,获得积分10
8秒前
爱吃西红柿完成签到 ,获得积分10
8秒前
独特飞鸟发布了新的文献求助10
9秒前
Nolan完成签到,获得积分10
9秒前
哇啦哇啦完成签到,获得积分10
9秒前
科研通AI2S应助2113采纳,获得10
9秒前
酷波er应助雨中尘埃采纳,获得10
9秒前
指尖弹出盛夏完成签到,获得积分10
10秒前
sisyphus完成签到,获得积分10
10秒前
alexyang完成签到,获得积分10
10秒前
橘子发布了新的文献求助10
10秒前
11秒前
flowers完成签到,获得积分10
11秒前
笨笨翰发布了新的文献求助10
11秒前
iris完成签到,获得积分10
11秒前
11秒前
12秒前
Ripples完成签到 ,获得积分10
12秒前
zhanghan完成签到,获得积分10
12秒前
Hello应助wwxd采纳,获得10
13秒前
姜二完成签到 ,获得积分10
13秒前
14秒前
14秒前
iris发布了新的文献求助10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230494
求助须知:如何正确求助?哪些是违规求助? 2877898
关于积分的说明 8203377
捐赠科研通 2545289
什么是DOI,文献DOI怎么找? 1374997
科研通“疑难数据库(出版商)”最低求助积分说明 647224
邀请新用户注册赠送积分活动 622159