亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new metabolic syndrome prediction model for self-evaluation as a primary screening tool in an apparently MetS-free population

医学 全国健康与营养检查调查 代谢综合征 逻辑回归 接收机工作特性 尤登J统计 人口学 体质指数 人口 全国健康访谈调查 内科学 老年学 肥胖 环境卫生 社会学
作者
Sabrina Sherman-Hahn,Elena Izkhakov,Saritte Perlman,Tomer Ziv‐Baran
出处
期刊:Preventive Medicine [Elsevier]
卷期号:175: 107701-107701 被引量:1
标识
DOI:10.1016/j.ypmed.2023.107701
摘要

Metabolic syndrome (MetS) is a growing global public health concern associated with increased morbidity and mortality. The study aimed to establish a simple self-evaluated prediction model to identify MetS. A cross-sectional study based on the American National Health and Nutrition Examination Survey database was performed. Participants aged ≥20 in the 2009–2018 surveys, with no current pregnancy or major morbidities, were included. The model was built with data from 2009 to 2016 and validated using 2017–2018 data. MetS was defined according to AHA/NHLBI guidelines. Multivariable logistic regression was applied to build a prediction model. The area under the receiver operating characteristic curve (AUC) was used to assess the discrimination ability and the maximal Youden's index was used to identify the optimal cut-off value. The study included 4245 individuals (median age 37, IQR 28–49, 51.8% females) in the training group and 911 individuals (median age 37, IQR 28–52, 52.5% females) in the validation group. Older age, male gender, non-Black race, no postsecondary education, and higher BMI were significantly associated with increased risk of MetS. The final model included age, gender, race, education, and BMI, and showed good discrimination ability (AUC = 0.810, 95% CI 0.793–0.827, sensitivity 80.4%, specificity 66.2%, positive likelihood ratio 2.379, negative likelihood ratio 0.296, PPV 59.6% and NPV 84.5%). A new model for self-evaluation may serve as a primary, easy-to-use screening tool to identify MetS in an apparently MetS-free population. A simple application may serve for primary and secondary prevention, thus enabling risk reduction in the development of cardiovascular morbidity and health expenditure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yi发布了新的文献求助50
4秒前
烟花应助碳酸芙兰采纳,获得10
13秒前
GIA完成签到,获得积分10
15秒前
科研通AI6应助麻薯头头采纳,获得10
17秒前
DrCuiTianjin完成签到 ,获得积分0
30秒前
31秒前
zgjc完成签到,获得积分10
42秒前
43秒前
43秒前
zgjc发布了新的文献求助10
47秒前
碳酸芙兰发布了新的文献求助10
48秒前
yi完成签到,获得积分10
53秒前
55秒前
58秒前
peter发布了新的文献求助10
1分钟前
睡觉补充能量完成签到,获得积分10
1分钟前
peter完成签到,获得积分10
1分钟前
Milton_z完成签到 ,获得积分0
1分钟前
diplomat完成签到,获得积分10
1分钟前
层层泡芙完成签到,获得积分10
1分钟前
泽豫发布了新的文献求助30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
Do_0完成签到,获得积分10
1分钟前
wandali完成签到,获得积分10
1分钟前
1分钟前
层层泡芙发布了新的文献求助10
1分钟前
1分钟前
泽豫关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
wandali发布了新的文献求助80
1分钟前
没有昵称发布了新的文献求助10
1分钟前
2分钟前
DiJia完成签到 ,获得积分10
2分钟前
duan完成签到 ,获得积分10
2分钟前
Akim应助阿瓜师傅采纳,获得10
2分钟前
飞快的跳跳糖完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323687
求助须知:如何正确求助?哪些是违规求助? 4464914
关于积分的说明 13893748
捐赠科研通 4356486
什么是DOI,文献DOI怎么找? 2392846
邀请新用户注册赠送积分活动 1386355
关于科研通互助平台的介绍 1356462