已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new metabolic syndrome prediction model for self-evaluation as a primary screening tool in an apparently MetS-free population

医学 全国健康与营养检查调查 代谢综合征 逻辑回归 接收机工作特性 尤登J统计 人口学 体质指数 人口 全国健康访谈调查 内科学 老年学 肥胖 环境卫生 社会学
作者
Sabrina Sherman-Hahn,Elena Izkhakov,Saritte Perlman,Tomer Ziv‐Baran
出处
期刊:Preventive Medicine [Elsevier]
卷期号:175: 107701-107701 被引量:1
标识
DOI:10.1016/j.ypmed.2023.107701
摘要

Metabolic syndrome (MetS) is a growing global public health concern associated with increased morbidity and mortality. The study aimed to establish a simple self-evaluated prediction model to identify MetS. A cross-sectional study based on the American National Health and Nutrition Examination Survey database was performed. Participants aged ≥20 in the 2009–2018 surveys, with no current pregnancy or major morbidities, were included. The model was built with data from 2009 to 2016 and validated using 2017–2018 data. MetS was defined according to AHA/NHLBI guidelines. Multivariable logistic regression was applied to build a prediction model. The area under the receiver operating characteristic curve (AUC) was used to assess the discrimination ability and the maximal Youden's index was used to identify the optimal cut-off value. The study included 4245 individuals (median age 37, IQR 28–49, 51.8% females) in the training group and 911 individuals (median age 37, IQR 28–52, 52.5% females) in the validation group. Older age, male gender, non-Black race, no postsecondary education, and higher BMI were significantly associated with increased risk of MetS. The final model included age, gender, race, education, and BMI, and showed good discrimination ability (AUC = 0.810, 95% CI 0.793–0.827, sensitivity 80.4%, specificity 66.2%, positive likelihood ratio 2.379, negative likelihood ratio 0.296, PPV 59.6% and NPV 84.5%). A new model for self-evaluation may serve as a primary, easy-to-use screening tool to identify MetS in an apparently MetS-free population. A simple application may serve for primary and secondary prevention, thus enabling risk reduction in the development of cardiovascular morbidity and health expenditure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王婷完成签到 ,获得积分10
1秒前
1秒前
西瓜完成签到 ,获得积分10
2秒前
吴彦祖应助otkur采纳,获得10
2秒前
情怀应助真不错采纳,获得10
2秒前
3秒前
直率孤风发布了新的文献求助10
3秒前
agf发布了新的文献求助10
3秒前
zzyyy完成签到 ,获得积分10
4秒前
Ashley发布了新的文献求助10
6秒前
7秒前
激动的55完成签到 ,获得积分10
9秒前
9秒前
9秒前
11秒前
和谐以冬完成签到 ,获得积分10
12秒前
12秒前
想想发布了新的文献求助10
13秒前
14秒前
15秒前
真不错发布了新的文献求助10
15秒前
sunhhhh完成签到 ,获得积分10
16秒前
慕青应助微笑的傲旋采纳,获得10
17秒前
木风2023完成签到,获得积分10
17秒前
18秒前
狂野雅彤发布了新的文献求助10
19秒前
真不错完成签到,获得积分10
22秒前
思源应助DD采纳,获得10
24秒前
25秒前
25秒前
天天快乐应助好天气采纳,获得10
28秒前
32秒前
CipherSage应助科研通管家采纳,获得10
33秒前
无极微光应助科研通管家采纳,获得20
33秒前
归尘应助科研通管家采纳,获得30
33秒前
归尘应助科研通管家采纳,获得30
33秒前
归尘应助科研通管家采纳,获得30
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
SciGPT应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279