A new metabolic syndrome prediction model for self-evaluation as a primary screening tool in an apparently MetS-free population

医学 全国健康与营养检查调查 代谢综合征 逻辑回归 接收机工作特性 尤登J统计 人口学 体质指数 人口 全国健康访谈调查 内科学 老年学 肥胖 环境卫生 社会学
作者
Sabrina Sherman-Hahn,Elena Izkhakov,Saritte Perlman,Tomer Ziv‐Baran
出处
期刊:Preventive Medicine [Elsevier]
卷期号:175: 107701-107701 被引量:1
标识
DOI:10.1016/j.ypmed.2023.107701
摘要

Metabolic syndrome (MetS) is a growing global public health concern associated with increased morbidity and mortality. The study aimed to establish a simple self-evaluated prediction model to identify MetS. A cross-sectional study based on the American National Health and Nutrition Examination Survey database was performed. Participants aged ≥20 in the 2009–2018 surveys, with no current pregnancy or major morbidities, were included. The model was built with data from 2009 to 2016 and validated using 2017–2018 data. MetS was defined according to AHA/NHLBI guidelines. Multivariable logistic regression was applied to build a prediction model. The area under the receiver operating characteristic curve (AUC) was used to assess the discrimination ability and the maximal Youden's index was used to identify the optimal cut-off value. The study included 4245 individuals (median age 37, IQR 28–49, 51.8% females) in the training group and 911 individuals (median age 37, IQR 28–52, 52.5% females) in the validation group. Older age, male gender, non-Black race, no postsecondary education, and higher BMI were significantly associated with increased risk of MetS. The final model included age, gender, race, education, and BMI, and showed good discrimination ability (AUC = 0.810, 95% CI 0.793–0.827, sensitivity 80.4%, specificity 66.2%, positive likelihood ratio 2.379, negative likelihood ratio 0.296, PPV 59.6% and NPV 84.5%). A new model for self-evaluation may serve as a primary, easy-to-use screening tool to identify MetS in an apparently MetS-free population. A simple application may serve for primary and secondary prevention, thus enabling risk reduction in the development of cardiovascular morbidity and health expenditure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yogita发布了新的文献求助10
1秒前
unless完成签到,获得积分10
1秒前
aoliao发布了新的文献求助10
2秒前
2秒前
犄角旮旯发布了新的文献求助10
2秒前
酷炫的幻丝完成签到 ,获得积分10
5秒前
在水一方应助957采纳,获得30
6秒前
7秒前
jack完成签到,获得积分10
8秒前
烟花应助jianglan采纳,获得10
9秒前
9秒前
xx完成签到 ,获得积分10
10秒前
阿橘完成签到,获得积分10
10秒前
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Tigher发布了新的文献求助30
14秒前
15秒前
Oops完成签到 ,获得积分10
16秒前
17秒前
阳阳发布了新的文献求助30
17秒前
橙橙星星发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
嘿嘿应助QinQin采纳,获得10
24秒前
怜然发布了新的文献求助10
24秒前
ding应助不想晚睡采纳,获得10
25秒前
25秒前
刻苦芷卉完成签到,获得积分10
25秒前
嘿嘿应助asdfqwer采纳,获得10
26秒前
qq完成签到,获得积分20
26秒前
细心的安珊完成签到 ,获得积分10
26秒前
bb发布了新的文献求助10
27秒前
28秒前
浮游应助曾婉之采纳,获得10
28秒前
28秒前
31秒前
科研dog完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716