清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning model to estimate probability of remission in patients with idiopathic membranous nephropathy

列线图 医学 接收机工作特性 肾脏疾病 膜性肾病 内科学 蛋白尿
作者
Lijin Duo,Lei Chen,Yongdi Zuo,Jiulin Guo,Manrong He,Hongsen Zhao,Yingxi Kang,Wanxin Tang
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:125: 111126-111126 被引量:5
标识
DOI:10.1016/j.intimp.2023.111126
摘要

Idiopathic membranous nephropathy (IMN) is a type of nephrotic syndrome and the leading cause of chronic kidney disease. As far as we know, no predictive model for assessing the prognosis of IMN is currently available. This study aims to establish a nomogram to predict remission probability in patients with IMN and assists clinicians to make treatment decisions.A total of 266 patients with histopathology-proven IMN were included in this study. Least absolute shrinkage and selection operator regression was utilized to identify the most important variables. Subsequently, multivariate Cox regression analysis was conducted to construct a nomogram, and bootstrap resampling was employed for internal validation. Receiver operating characteristic and calibration curves and decision curve analysis (DCA) were utilized to assess the performance and clinical utility of the developed model.A prognostic nomogram was established, which incorporated creatinine, glomerular_basement_membrane_thickening, gender, IgG_deposition, low-density lipoprotein cholesterol, and fibrinogen. The areas under the curves of the 3-, 12-, 24-month were 0.751, 0.725, and 0.830 in the training set, and 0.729, 0.730, and 0.948 in the validation set respectively. These results and calibration curves demonstrated the good discrimination and calibration of the nomogram in the training and validation sets. Additionally, DCA indicated that the nomogram was useful for remission prediction in clinical settings.The nomogram was useful for clinicians to evaluate the prognosis of patients with IMN in early stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thi完成签到,获得积分10
刚刚
14秒前
20秒前
21秒前
27秒前
吃饱再睡完成签到 ,获得积分10
39秒前
39秒前
量子星尘发布了新的文献求助10
42秒前
酷酷的紫南完成签到 ,获得积分10
47秒前
51秒前
xue完成签到 ,获得积分10
54秒前
冰凌心恋完成签到,获得积分10
56秒前
1分钟前
www发布了新的文献求助10
1分钟前
hanlixuan完成签到 ,获得积分10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
wanci应助john2333采纳,获得10
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
2分钟前
Jin完成签到,获得积分10
2分钟前
jin完成签到,获得积分10
2分钟前
2分钟前
aming发布了新的文献求助10
2分钟前
john2333关注了科研通微信公众号
3分钟前
3分钟前
melody完成签到 ,获得积分10
3分钟前
john2333发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
深情安青应助www采纳,获得10
3分钟前
Scheduling完成签到 ,获得积分10
3分钟前
bigtree完成签到 ,获得积分10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
开心惜梦完成签到,获得积分10
4分钟前
yan完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304