Machine learning model to estimate probability of remission in patients with idiopathic membranous nephropathy

列线图 医学 接收机工作特性 肾脏疾病 膜性肾病 内科学 蛋白尿
作者
Lijin Duo,Lei Chen,Yongdi Zuo,Jiulin Guo,Manrong He,Hongsen Zhao,Yingxi Kang,Wanxin Tang
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:125: 111126-111126 被引量:5
标识
DOI:10.1016/j.intimp.2023.111126
摘要

Idiopathic membranous nephropathy (IMN) is a type of nephrotic syndrome and the leading cause of chronic kidney disease. As far as we know, no predictive model for assessing the prognosis of IMN is currently available. This study aims to establish a nomogram to predict remission probability in patients with IMN and assists clinicians to make treatment decisions.A total of 266 patients with histopathology-proven IMN were included in this study. Least absolute shrinkage and selection operator regression was utilized to identify the most important variables. Subsequently, multivariate Cox regression analysis was conducted to construct a nomogram, and bootstrap resampling was employed for internal validation. Receiver operating characteristic and calibration curves and decision curve analysis (DCA) were utilized to assess the performance and clinical utility of the developed model.A prognostic nomogram was established, which incorporated creatinine, glomerular_basement_membrane_thickening, gender, IgG_deposition, low-density lipoprotein cholesterol, and fibrinogen. The areas under the curves of the 3-, 12-, 24-month were 0.751, 0.725, and 0.830 in the training set, and 0.729, 0.730, and 0.948 in the validation set respectively. These results and calibration curves demonstrated the good discrimination and calibration of the nomogram in the training and validation sets. Additionally, DCA indicated that the nomogram was useful for remission prediction in clinical settings.The nomogram was useful for clinicians to evaluate the prognosis of patients with IMN in early stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
gapper完成签到 ,获得积分10
刚刚
1秒前
2秒前
Sean发布了新的文献求助10
3秒前
Jasper应助明亮的颖采纳,获得30
3秒前
望仔完成签到,获得积分10
3秒前
Ann完成签到,获得积分10
3秒前
4秒前
殷勤的紫槐应助wipmzxu采纳,获得200
4秒前
LIU完成签到 ,获得积分10
6秒前
myc发布了新的文献求助10
7秒前
7秒前
7秒前
泠漓完成签到 ,获得积分10
8秒前
王尧完成签到,获得积分10
9秒前
可靠半青完成签到 ,获得积分10
10秒前
科研通AI6应助tejing1158采纳,获得10
10秒前
11秒前
jia完成签到 ,获得积分10
11秒前
明亮的颖发布了新的文献求助30
12秒前
rslysywd完成签到,获得积分10
12秒前
12秒前
现代的bb完成签到,获得积分10
14秒前
xu1227发布了新的文献求助10
15秒前
大锤完成签到,获得积分20
15秒前
zz发布了新的文献求助10
17秒前
DXB完成签到 ,获得积分10
17秒前
小蘑菇应助明亮的颖采纳,获得10
18秒前
jx314发布了新的文献求助10
19秒前
20秒前
伶俐的铁身完成签到,获得积分10
20秒前
aub发布了新的文献求助10
20秒前
情怀应助王贺帅采纳,获得10
21秒前
唠叨的元槐完成签到,获得积分10
22秒前
vv1223完成签到,获得积分10
22秒前
23秒前
王思聪完成签到 ,获得积分10
24秒前
万能图书馆应助漠雨寒灯采纳,获得10
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345