Dual attention transformer network for hyperspectral image classification

计算机科学 高光谱成像 人工智能 模式识别(心理学) 变压器 卷积神经网络 特征提取 空间分析 遥感 物理 量子力学 电压 地质学
作者
Zhenqiu Shu,Yuyang Wang,Zhengtao Yu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107351-107351 被引量:3
标识
DOI:10.1016/j.engappai.2023.107351
摘要

Hyperspectral image classification (HSIC) has been a significant topic in the field of remote sensing in the past few years. Convolutional neural networks have shown promising performance in HSIC applications due to their strong local feature extraction ability. However, they struggle to extract global information from HSIs, thereby resulting in classification performance limitations. Recently, vision transformers have been used to solve HSIC problems, and its advantage is to adopt the multi-head self-attention mechanism to explore global dependencies. Nevertheless, the extracted features using MHSA usually exhibit over-dispersion due to the abundance of band information hidden in HSIs. In this work, we propose a novel method, called dual attention transformer network (DATN), for HSIC problems. It consists of two types of modules, namely the spatial–spectral hybrid transformer (SSHT) module and the spectral local-conv block (SLCB) module. Specifically, the SSHT module aims to utilize the MHSA to capture spatial and spectral feature information. Therefore, it can effectively utilize global spatial–spectral features and embed the local spatial information, simultaneously. Besides, we design a SLCB module to extract the local spectral information of HSIs effectively. Then the SSHT and SLCB modules are integrated into an end-to-end framework. Finally, the global and local spatial–spectral features extracted from this framework are input into the fully connected layer, and then classification results of HSIs are obtained. A series of experiments on three HSI datasets have demonstrated that our DATN approach outperforms several state-of-the-art HSIC approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔺映秋完成签到,获得积分10
1秒前
Akim应助冷酷的听兰采纳,获得10
1秒前
1秒前
方知发布了新的文献求助10
1秒前
3秒前
万能图书馆应助岐祁琪奇采纳,获得10
4秒前
4秒前
时尚的不可关注了科研通微信公众号
5秒前
ABC发布了新的文献求助10
6秒前
GTI完成签到,获得积分10
6秒前
galioo3000完成签到,获得积分10
6秒前
1123432412发布了新的文献求助10
6秒前
Zac发布了新的文献求助10
7秒前
呋喃发布了新的文献求助10
7秒前
安详的帽子完成签到 ,获得积分10
7秒前
选择性哑巴完成签到 ,获得积分10
8秒前
HHW完成签到,获得积分10
9秒前
董璐完成签到,获得积分20
10秒前
顺顺尼发布了新的文献求助10
10秒前
11秒前
12秒前
方知完成签到,获得积分10
12秒前
12秒前
Lemon发布了新的文献求助10
12秒前
失眠的血茗应助12采纳,获得10
13秒前
壮观的寻凝完成签到,获得积分10
14秒前
Nes完成签到,获得积分10
14秒前
Moonlight发布了新的文献求助10
16秒前
羞涩的萃给羞涩的萃的求助进行了留言
16秒前
不安海蓝完成签到,获得积分10
17秒前
Nes发布了新的文献求助10
17秒前
17秒前
18秒前
小马甲应助善良天抒采纳,获得10
18秒前
思源应助Dkakxncnsksl采纳,获得10
19秒前
搜集达人应助咖啡先生采纳,获得10
20秒前
科目三应助jimey采纳,获得10
20秒前
我是老大应助小只bb采纳,获得10
20秒前
仔拉发布了新的文献求助10
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023