亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual attention transformer network for hyperspectral image classification

计算机科学 高光谱成像 人工智能 模式识别(心理学) 变压器 卷积神经网络 特征提取 空间分析 遥感 物理 量子力学 电压 地质学
作者
Zhenqiu Shu,Yuyang Wang,Zhengtao Yu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107351-107351 被引量:31
标识
DOI:10.1016/j.engappai.2023.107351
摘要

Hyperspectral image classification (HSIC) has been a significant topic in the field of remote sensing in the past few years. Convolutional neural networks have shown promising performance in HSIC applications due to their strong local feature extraction ability. However, they struggle to extract global information from HSIs, thereby resulting in classification performance limitations. Recently, vision transformers have been used to solve HSIC problems, and its advantage is to adopt the multi-head self-attention mechanism to explore global dependencies. Nevertheless, the extracted features using MHSA usually exhibit over-dispersion due to the abundance of band information hidden in HSIs. In this work, we propose a novel method, called dual attention transformer network (DATN), for HSIC problems. It consists of two types of modules, namely the spatial–spectral hybrid transformer (SSHT) module and the spectral local-conv block (SLCB) module. Specifically, the SSHT module aims to utilize the MHSA to capture spatial and spectral feature information. Therefore, it can effectively utilize global spatial–spectral features and embed the local spatial information, simultaneously. Besides, we design a SLCB module to extract the local spectral information of HSIs effectively. Then the SSHT and SLCB modules are integrated into an end-to-end framework. Finally, the global and local spatial–spectral features extracted from this framework are input into the fully connected layer, and then classification results of HSIs are obtained. A series of experiments on three HSI datasets have demonstrated that our DATN approach outperforms several state-of-the-art HSIC approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
DocChen发布了新的文献求助10
5秒前
彩虹儿应助SiboN采纳,获得10
10秒前
23秒前
Ljm发布了新的文献求助20
59秒前
vitamin完成签到 ,获得积分10
1分钟前
粱青寒发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助Ljm采纳,获得20
1分钟前
1分钟前
堪捕发布了新的文献求助10
1分钟前
赘婿应助袁青寒采纳,获得10
2分钟前
Owen应助活泼学生采纳,获得10
2分钟前
常有李完成签到,获得积分10
2分钟前
斯文败类应助袁青寒采纳,获得10
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
搜集达人应助袁青寒采纳,获得10
2分钟前
顾矜应助袁青寒采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
Ljm应助袁青寒采纳,获得10
3分钟前
3分钟前
小二郎应助活泼学生采纳,获得10
3分钟前
3分钟前
3分钟前
罐头食品发布了新的文献求助10
3分钟前
沉静天思完成签到,获得积分10
3分钟前
思源应助沉静天思采纳,获得10
4分钟前
4分钟前
粱青寒完成签到,获得积分10
4分钟前
沉静天思发布了新的文献求助10
4分钟前
4分钟前
活泼学生发布了新的文献求助10
4分钟前
4分钟前
HYQ完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助50
5分钟前
雨雨发布了新的文献求助30
5分钟前
Enso完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900929
求助须知:如何正确求助?哪些是违规求助? 4180573
关于积分的说明 12977069
捐赠科研通 3945389
什么是DOI,文献DOI怎么找? 2164089
邀请新用户注册赠送积分活动 1182384
关于科研通互助平台的介绍 1088697