Dual attention transformer network for hyperspectral image classification

计算机科学 高光谱成像 人工智能 模式识别(心理学) 变压器 卷积神经网络 特征提取 空间分析 遥感 物理 量子力学 电压 地质学
作者
Zhenqiu Shu,Yuyang Wang,Zhengtao Yu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107351-107351 被引量:9
标识
DOI:10.1016/j.engappai.2023.107351
摘要

Hyperspectral image classification (HSIC) has been a significant topic in the field of remote sensing in the past few years. Convolutional neural networks have shown promising performance in HSIC applications due to their strong local feature extraction ability. However, they struggle to extract global information from HSIs, thereby resulting in classification performance limitations. Recently, vision transformers have been used to solve HSIC problems, and its advantage is to adopt the multi-head self-attention mechanism to explore global dependencies. Nevertheless, the extracted features using MHSA usually exhibit over-dispersion due to the abundance of band information hidden in HSIs. In this work, we propose a novel method, called dual attention transformer network (DATN), for HSIC problems. It consists of two types of modules, namely the spatial–spectral hybrid transformer (SSHT) module and the spectral local-conv block (SLCB) module. Specifically, the SSHT module aims to utilize the MHSA to capture spatial and spectral feature information. Therefore, it can effectively utilize global spatial–spectral features and embed the local spatial information, simultaneously. Besides, we design a SLCB module to extract the local spectral information of HSIs effectively. Then the SSHT and SLCB modules are integrated into an end-to-end framework. Finally, the global and local spatial–spectral features extracted from this framework are input into the fully connected layer, and then classification results of HSIs are obtained. A series of experiments on three HSI datasets have demonstrated that our DATN approach outperforms several state-of-the-art HSIC approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助坚定的亦绿采纳,获得10
1秒前
1秒前
yu完成签到,获得积分10
1秒前
Chris完成签到,获得积分10
2秒前
cookie发布了新的文献求助10
3秒前
胖仔完成签到,获得积分10
3秒前
Chan0501完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
duxinyue发布了新的文献求助10
5秒前
汉堡转转转完成签到,获得积分10
6秒前
喵酱发布了新的文献求助30
6秒前
6666完成签到,获得积分10
6秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
7秒前
wjn完成签到,获得积分10
7秒前
8秒前
竹子完成签到,获得积分10
8秒前
MAKEYF完成签到 ,获得积分10
8秒前
9秒前
Owen应助猪猪hero采纳,获得10
9秒前
10秒前
CipherSage应助海棠yiyi采纳,获得50
11秒前
Khr1stINK发布了新的文献求助10
11秒前
11秒前
脑洞疼应助卡卡采纳,获得10
11秒前
11秒前
Rrr发布了新的文献求助10
12秒前
科研通AI5应助zmy采纳,获得10
13秒前
William鉴哲发布了新的文献求助10
13秒前
情怀应助只道寻常采纳,获得10
14秒前
14秒前
cyy完成签到,获得积分20
14秒前
orixero应助小庄采纳,获得10
15秒前
16秒前
侦察兵发布了新的文献求助10
16秒前
司徒元瑶完成签到 ,获得积分10
16秒前
梓榆发布了新的文献求助10
16秒前
16秒前
sweetbearm应助通~采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794