Dual attention transformer network for hyperspectral image classification

计算机科学 高光谱成像 人工智能 模式识别(心理学) 变压器 卷积神经网络 特征提取 空间分析 遥感 物理 量子力学 电压 地质学
作者
Zhenqiu Shu,Yuyang Wang,Zhengtao Yu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107351-107351 被引量:43
标识
DOI:10.1016/j.engappai.2023.107351
摘要

Hyperspectral image classification (HSIC) has been a significant topic in the field of remote sensing in the past few years. Convolutional neural networks have shown promising performance in HSIC applications due to their strong local feature extraction ability. However, they struggle to extract global information from HSIs, thereby resulting in classification performance limitations. Recently, vision transformers have been used to solve HSIC problems, and its advantage is to adopt the multi-head self-attention mechanism to explore global dependencies. Nevertheless, the extracted features using MHSA usually exhibit over-dispersion due to the abundance of band information hidden in HSIs. In this work, we propose a novel method, called dual attention transformer network (DATN), for HSIC problems. It consists of two types of modules, namely the spatial–spectral hybrid transformer (SSHT) module and the spectral local-conv block (SLCB) module. Specifically, the SSHT module aims to utilize the MHSA to capture spatial and spectral feature information. Therefore, it can effectively utilize global spatial–spectral features and embed the local spatial information, simultaneously. Besides, we design a SLCB module to extract the local spectral information of HSIs effectively. Then the SSHT and SLCB modules are integrated into an end-to-end framework. Finally, the global and local spatial–spectral features extracted from this framework are input into the fully connected layer, and then classification results of HSIs are obtained. A series of experiments on three HSI datasets have demonstrated that our DATN approach outperforms several state-of-the-art HSIC approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
椿湫发布了新的文献求助10
1秒前
1秒前
1秒前
empty完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
hancahngxiao完成签到,获得积分10
4秒前
yeye发布了新的文献求助10
4秒前
lan完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
做好自己完成签到,获得积分20
4秒前
BigFlash完成签到,获得积分10
5秒前
5秒前
YsGao应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得20
5秒前
风中凌旋应助科研通管家采纳,获得10
5秒前
YsGao应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
风中凌旋应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
风中凌旋应助科研通管家采纳,获得10
6秒前
6秒前
我是老大应助万里采纳,获得10
6秒前
元谷雪应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
杜明智发布了新的文献求助10
6秒前
打打应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454