亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An attention-based temporal convolutional network method for predicting remaining useful life of aero-engine

计算机科学 卷积神经网络 保险丝(电气) 人工智能 深度学习 特征(语言学) 机制(生物学) 模块化设计 特征提取 模式识别(心理学) 机器学习 数据挖掘 语言学 哲学 认识论 电气工程 工程类 操作系统
作者
Qiang Zhang,Qiong Liu,Ye Qin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107241-107241 被引量:22
标识
DOI:10.1016/j.engappai.2023.107241
摘要

Researches on Remaining Useful Life (RUL) prediction of aero-engine could help to make maintenance plans, improve operation reliabilities and reduce maintenance costs. While deep learning methods have been widely used in RUL prediction research, most deep learning-based RUL prediction methods tend to treat input features as equally important. Contributions of different channels and time steps from input features are not considered simultaneously, which will inevitably affect efficiencies and accuracies of RUL prediction. Therefore, a novel deep learning-based RUL prediction method named attention-based temporal convolutional network (ATCN) is proposed in this article. First, an improved self-attention mechanism is used to weight contributions of different time steps from input features. Input features of time steps closely related to RUL are enhanced by the improved self-attention mechanism, which could improve efficiencies of feature extraction in a network. Then, a temporal convolutional network is constructed to capture long-term dependent information and extract feature representations from weighted features of the improved self-attention mechanism. Next, a squeeze-and-excitation mechanism is adopted to weight contributions of different channels from feature representations, which could help to improve prediction accuracies of the network. Finally, a fully connected layer is constructed to fuse weighted features to output RUL values. A commercial modular aero-propulsion system simulation (C-MAPSS) dataset from NASA is applied to verify effects of the proposed method. Performances of the proposed method are compared with those based on different neural network architectures, such as CNN, RNN, LSTM, DCNN, TCN, BiGRU-TSAM, AGCNN and channel attention plus Transformer. Results show that the proposed method could yield results with higher accuracy for RUL prediction of aero-engine than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
大脸猫完成签到 ,获得积分10
55秒前
yaoyao发布了新的文献求助10
57秒前
chiazy完成签到 ,获得积分10
1分钟前
1分钟前
通科研完成签到 ,获得积分10
1分钟前
1分钟前
DrleedsG完成签到,获得积分10
2分钟前
DrleedsG发布了新的文献求助10
2分钟前
2分钟前
2分钟前
liner完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
星宫韩立完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
小马甲应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
锦鲤完成签到 ,获得积分10
7分钟前
7分钟前
Later完成签到,获得积分20
7分钟前
8分钟前
景泰蓝完成签到,获得积分10
9分钟前
景泰蓝发布了新的文献求助10
9分钟前
9分钟前
10分钟前
10分钟前
鱼块发布了新的文献求助10
10分钟前
FashionBoy应助科研通管家采纳,获得10
10分钟前
赘婿应助鱼块采纳,获得10
10分钟前
一禅完成签到 ,获得积分10
12分钟前
lanbing802完成签到,获得积分10
12分钟前
Jasper应助zjl123采纳,获得10
12分钟前
12分钟前
一杯六一完成签到,获得积分10
12分钟前
14分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005