Smart soil image classification system using lightweight convolutional neural network

壤土 土壤类型 计算机科学 土壤质地 土壤分类 环境科学 土工试验 人工智能 土壤水分 土壤科学 模式识别(心理学)
作者
D.N. Kiran Pandiri,R. Murugan,Tripti Goel
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122185-122185 被引量:10
标识
DOI:10.1016/j.eswa.2023.122185
摘要

In the agriculture sector, soil classification plays a significant task, as it helps in soil tillage, crop selection, moisture level estimation, and automation. Conventionally, soil classification is carried out with the help of physical, chemical, and biological characteristics of the geo-referenced and mapped soil. Soil classification by conventional and laboratory methods is time-consuming, high-cost, and requires proficiency. This study presents a quick and cost-effective prediction of soil type by using soil images. A soil image dataset has been created to classify the soil type using images. To create the soil image dataset, 392 soil samples are collected from different agricultural fields in Andhra Pradesh, India. The collected samples are dried and the soil type is identified using a sieve and hydrometer analysis in the laboratory. An imaging setup has been made to capture the images of the dried soil samples using a smartphone camera. The captured images are pre-processed using: RGB extraction, and V extraction from HSV bins, and adaptive histogram are applied to highlight the texture features of the soil images. A novel lightweight convolutional neural network called Light-SoilNet is proposed to classify five soil sample images: sand, clay, loam, loamy sand, and sandy loam. The proposed network is designed to take care of the imbalanced soil image dataset. The proposed network is tested and compared with state-of-the-art lightweight and pre-trained deep learning networks. The proposed Light-SoilNet network architecture has produced an overall accuracy of 97.2% in classifying the soils. The comparison of the results shows the performance of the proposed model using the image and deep learning techniques in classifying the soil types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Augusterny发布了新的文献求助10
刚刚
领导范儿应助aIARLAE采纳,获得10
刚刚
1秒前
科研通AI2S应助xukaixuan001采纳,获得10
1秒前
逐徒发布了新的文献求助10
1秒前
2秒前
昨天发布了新的文献求助10
2秒前
3秒前
bkagyin应助爱吃鱼的猫采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
柚子完成签到,获得积分10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
8秒前
8秒前
XIAOWANG完成签到,获得积分10
8秒前
元海云完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
11秒前
11秒前
12秒前
13秒前
moxuyio完成签到,获得积分10
13秒前
七七发布了新的文献求助10
13秒前
zyp发布了新的文献求助10
14秒前
跳跃乘风完成签到,获得积分10
14秒前
14秒前
柚子发布了新的文献求助10
14秒前
舟舟完成签到,获得积分10
15秒前
16秒前
科研宝发布了新的文献求助10
16秒前
17秒前
Bill完成签到 ,获得积分10
17秒前
dusk发布了新的文献求助10
17秒前
18秒前
堂哥哥发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123390
求助须知:如何正确求助?哪些是违规求助? 2773951
关于积分的说明 7720148
捐赠科研通 2429656
什么是DOI,文献DOI怎么找? 1290409
科研通“疑难数据库(出版商)”最低求助积分说明 621833
版权声明 600251