Smart soil image classification system using lightweight convolutional neural network

壤土 土壤类型 计算机科学 土壤质地 土壤分类 环境科学 土工试验 人工智能 土壤水分 土壤科学 模式识别(心理学)
作者
D. N. Kiran Pandiri,R. Murugan,Tripti Goel
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122185-122185 被引量:17
标识
DOI:10.1016/j.eswa.2023.122185
摘要

In the agriculture sector, soil classification plays a significant task, as it helps in soil tillage, crop selection, moisture level estimation, and automation. Conventionally, soil classification is carried out with the help of physical, chemical, and biological characteristics of the geo-referenced and mapped soil. Soil classification by conventional and laboratory methods is time-consuming, high-cost, and requires proficiency. This study presents a quick and cost-effective prediction of soil type by using soil images. A soil image dataset has been created to classify the soil type using images. To create the soil image dataset, 392 soil samples are collected from different agricultural fields in Andhra Pradesh, India. The collected samples are dried and the soil type is identified using a sieve and hydrometer analysis in the laboratory. An imaging setup has been made to capture the images of the dried soil samples using a smartphone camera. The captured images are pre-processed using: RGB extraction, and V extraction from HSV bins, and adaptive histogram are applied to highlight the texture features of the soil images. A novel lightweight convolutional neural network called Light-SoilNet is proposed to classify five soil sample images: sand, clay, loam, loamy sand, and sandy loam. The proposed network is designed to take care of the imbalanced soil image dataset. The proposed network is tested and compared with state-of-the-art lightweight and pre-trained deep learning networks. The proposed Light-SoilNet network architecture has produced an overall accuracy of 97.2% in classifying the soils. The comparison of the results shows the performance of the proposed model using the image and deep learning techniques in classifying the soil types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一米阳光发布了新的文献求助10
2秒前
3秒前
鹿靡完成签到 ,获得积分10
4秒前
4秒前
NexusExplorer应助温暖寻雪采纳,获得10
5秒前
7秒前
Te_quiero发布了新的文献求助30
8秒前
老阎应助111采纳,获得100
9秒前
生动路人应助111采纳,获得10
9秒前
Liufgui应助吨吨采纳,获得10
10秒前
YiyueChan完成签到,获得积分10
10秒前
lingo发布了新的文献求助10
11秒前
一米阳光完成签到,获得积分10
12秒前
粗心的尔曼完成签到,获得积分10
13秒前
2333完成签到,获得积分10
14秒前
十三完成签到 ,获得积分10
15秒前
NexusExplorer应助626采纳,获得10
15秒前
无花果应助程荷芬采纳,获得10
15秒前
啦啦啦发布了新的文献求助10
17秒前
陈住气完成签到,获得积分10
22秒前
李健的小迷弟应助weiy采纳,获得10
24秒前
icy_cyr发布了新的文献求助10
25秒前
djf完成签到,获得积分10
26秒前
乐乐应助卤蛋今天没学习采纳,获得10
27秒前
27秒前
27秒前
27秒前
29秒前
30秒前
元气少女猪刚鬣应助zz采纳,获得10
30秒前
boytoa完成签到 ,获得积分10
31秒前
bystanding发布了新的文献求助10
31秒前
glomming发布了新的文献求助30
32秒前
小帅发布了新的文献求助10
33秒前
33秒前
庄庄发布了新的文献求助10
35秒前
35秒前
35秒前
薯条发布了新的文献求助20
36秒前
Xwu发布了新的文献求助20
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075