MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:12
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牙牙呀发布了新的文献求助10
刚刚
yousheng完成签到,获得积分10
1秒前
1秒前
jiayueiyang发布了新的文献求助10
2秒前
科研通AI6应助任性的如南采纳,获得10
2秒前
maguodrgon完成签到,获得积分10
3秒前
4秒前
4秒前
四条发布了新的文献求助10
5秒前
闪闪凝冬完成签到,获得积分10
5秒前
小王同志发布了新的文献求助10
6秒前
7秒前
风趣雪一发布了新的文献求助10
9秒前
9秒前
JM完成签到 ,获得积分10
9秒前
皱眉完成签到,获得积分10
11秒前
酷波er应助jiayueiyang采纳,获得10
11秒前
maomao完成签到 ,获得积分10
13秒前
13秒前
Hello应助冷酷的夜柳采纳,获得10
14秒前
15秒前
皱眉发布了新的文献求助10
15秒前
16秒前
16秒前
衡希完成签到,获得积分10
17秒前
谓易ing完成签到 ,获得积分10
18秒前
Mr.靠谱发布了新的文献求助10
18秒前
慕子哥发布了新的文献求助10
18秒前
鲁鲁完成签到,获得积分10
20秒前
王一正完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
颖ying完成签到,获得积分10
23秒前
完美世界应助超级的红酒采纳,获得10
25秒前
25秒前
挞挞不要胖完成签到 ,获得积分10
26秒前
27秒前
27秒前
慕子哥完成签到,获得积分20
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421748
求助须知:如何正确求助?哪些是违规求助? 4536717
关于积分的说明 14154660
捐赠科研通 4453214
什么是DOI,文献DOI怎么找? 2442809
邀请新用户注册赠送积分活动 1434152
关于科研通互助平台的介绍 1411284