MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:12
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的宽完成签到 ,获得积分10
1秒前
随遇而安应助MM采纳,获得20
2秒前
培a发布了新的文献求助10
2秒前
脑洞疼应助lz采纳,获得50
2秒前
清晨的小鹿完成签到,获得积分10
3秒前
糟糕的绮露完成签到,获得积分10
3秒前
dyk发布了新的文献求助10
3秒前
刘芬完成签到,获得积分10
4秒前
思源应助科研鼠采纳,获得10
4秒前
5秒前
子非我发布了新的文献求助10
5秒前
Meyako应助踏实的蘑菇采纳,获得20
5秒前
songyu完成签到,获得积分10
5秒前
jin发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
wp完成签到,获得积分10
7秒前
今后应助平常平凡采纳,获得10
7秒前
旅客完成签到,获得积分10
8秒前
zl12345完成签到,获得积分10
8秒前
培a完成签到,获得积分10
8秒前
ZDD发布了新的文献求助10
9秒前
行健灵山完成签到 ,获得积分10
9秒前
困困包应助叶子采纳,获得10
10秒前
10秒前
10秒前
gt完成签到,获得积分10
10秒前
diu举报Alex求助涉嫌违规
10秒前
嘿嘿发布了新的文献求助10
10秒前
高文强完成签到,获得积分10
10秒前
张雨茜完成签到,获得积分10
10秒前
10秒前
loogn7发布了新的文献求助10
11秒前
12完成签到,获得积分10
12秒前
ly发布了新的文献求助10
12秒前
严剑发布了新的文献求助10
12秒前
12秒前
NRS123完成签到,获得积分10
12秒前
无私诗桃完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354035
求助须知:如何正确求助?哪些是违规求助? 4486507
关于积分的说明 13966675
捐赠科研通 4386923
什么是DOI,文献DOI怎么找? 2410096
邀请新用户注册赠送积分活动 1402435
关于科研通互助平台的介绍 1376249