MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:12
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助牛初辰采纳,获得10
刚刚
chenbin1105完成签到,获得积分10
刚刚
知犯何逆完成签到,获得积分10
刚刚
科研通AI2S应助轻轻采纳,获得10
1秒前
2秒前
3秒前
4秒前
许思真发布了新的文献求助10
4秒前
TT木木发布了新的文献求助10
4秒前
4秒前
花花菌发布了新的文献求助10
4秒前
avalanche应助asdzsx采纳,获得50
5秒前
5秒前
5秒前
wenqing发布了新的文献求助10
5秒前
田様应助vv采纳,获得10
5秒前
5秒前
6秒前
Criminology34应助义气凝阳采纳,获得10
6秒前
柚子发布了新的文献求助10
6秒前
在水一方应助笑点低钥匙采纳,获得10
7秒前
科研狗发布了新的文献求助10
7秒前
晚风完成签到,获得积分10
7秒前
瑁柏完成签到,获得积分10
8秒前
9秒前
万事顺遂发布了新的文献求助10
9秒前
540Zoyalli发布了新的文献求助10
9秒前
春饼完成签到,获得积分10
9秒前
所爱皆在发布了新的文献求助10
9秒前
科研通AI6应助刘xy采纳,获得10
10秒前
意志所向发布了新的文献求助10
10秒前
研友_LX66qZ发布了新的文献求助10
11秒前
XXF发布了新的文献求助20
11秒前
bxhcs完成签到,获得积分10
11秒前
plddbc发布了新的文献求助10
12秒前
12秒前
无花果应助koubi采纳,获得10
13秒前
英俊的铭应助oiinn采纳,获得10
13秒前
13秒前
勤奋映梦完成签到,获得积分10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442916
求助须知:如何正确求助?哪些是违规求助? 4552957
关于积分的说明 14239980
捐赠科研通 4474411
什么是DOI,文献DOI怎么找? 2452002
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418675