MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:12
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子QAQ发布了新的文献求助30
刚刚
1秒前
summertny发布了新的文献求助10
2秒前
2秒前
Owen应助马小尚采纳,获得10
2秒前
lilil发布了新的文献求助10
2秒前
永政sci完成签到,获得积分10
2秒前
2秒前
3秒前
微昆界发布了新的文献求助10
3秒前
jiaminzhao发布了新的文献求助10
3秒前
3秒前
dameng发布了新的文献求助10
3秒前
zzz发布了新的文献求助10
4秒前
朱益辉完成签到,获得积分10
4秒前
伶俐芷珊发布了新的文献求助10
4秒前
科研通AI6应助WWWUBING采纳,获得10
4秒前
直率铃铛2发布了新的文献求助10
5秒前
绝世冰淇淋完成签到 ,获得积分10
6秒前
阿宝发布了新的文献求助10
6秒前
英姑应助猫的报恩采纳,获得10
6秒前
7秒前
小鹿发布了新的文献求助10
7秒前
7秒前
回复对方发布了新的文献求助10
8秒前
8秒前
木头马尾发布了新的文献求助30
8秒前
8秒前
shaozi发布了新的文献求助10
9秒前
卓ss发布了新的文献求助30
9秒前
11秒前
guoxuefan发布了新的文献求助10
11秒前
研友_VZG7GZ应助kangwen采纳,获得30
11秒前
12秒前
快乐的胖子应助行程采纳,获得30
12秒前
夏d发布了新的文献求助10
12秒前
脑洞疼应助WWWUBING采纳,获得10
12秒前
Bond发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933907
求助须知:如何正确求助?哪些是违规求助? 4201940
关于积分的说明 13055538
捐赠科研通 3976004
什么是DOI,文献DOI怎么找? 2178697
邀请新用户注册赠送积分活动 1195062
关于科研通互助平台的介绍 1106433