已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:12
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哈哈发布了新的文献求助10
3秒前
洁净灵松发布了新的文献求助10
3秒前
4秒前
Suxxin完成签到,获得积分10
6秒前
科研通AI6应助自由的冬易采纳,获得80
8秒前
hzh发布了新的文献求助10
8秒前
小二郎应助皮卡丘采纳,获得10
9秒前
MINGKKK发布了新的文献求助10
10秒前
11秒前
pylchm完成签到,获得积分10
11秒前
12秒前
13秒前
hzh完成签到,获得积分10
14秒前
无奈萝完成签到,获得积分10
14秒前
桐桐应助隐形路灯采纳,获得10
16秒前
oldiao发布了新的文献求助10
17秒前
HHW关闭了HHW文献求助
17秒前
17秒前
两袖清风发布了新的文献求助10
18秒前
星辰大海应助微光熠采纳,获得10
23秒前
康康完成签到 ,获得积分10
23秒前
科研通AI6应助悦耳夏彤采纳,获得10
25秒前
yxlyx完成签到,获得积分10
28秒前
29秒前
蛙蛙完成签到,获得积分10
31秒前
科研通AI6应助ayintree采纳,获得10
32秒前
34秒前
34秒前
35秒前
充电宝应助自由的冬易采纳,获得10
39秒前
郭焱焓发布了新的文献求助10
39秒前
小袁完成签到 ,获得积分10
39秒前
隐形路灯发布了新的文献求助10
40秒前
40秒前
华仔应助科研通管家采纳,获得10
40秒前
wanci应助科研通管家采纳,获得10
40秒前
思源应助科研通管家采纳,获得10
41秒前
领导范儿应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得50
41秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449524
求助须知:如何正确求助?哪些是违规求助? 4557576
关于积分的说明 14264395
捐赠科研通 4480697
什么是DOI,文献DOI怎么找? 2454510
邀请新用户注册赠送积分活动 1445294
关于科研通互助平台的介绍 1421031