亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:3
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
23秒前
27秒前
renxiaoting发布了新的文献求助10
39秒前
Lliu完成签到,获得积分10
53秒前
56秒前
jyy发布了新的文献求助10
1分钟前
1分钟前
bc举报仔仔求助涉嫌违规
1分钟前
1分钟前
renxiaoting发布了新的文献求助10
1分钟前
renxiaoting发布了新的文献求助10
2分钟前
刘毕业完成签到,获得积分10
2分钟前
科研通AI5应助天真咖啡豆采纳,获得10
2分钟前
专一的白萱完成签到 ,获得积分10
2分钟前
2分钟前
onion完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
orixero应助dll采纳,获得10
2分钟前
2分钟前
3分钟前
renxiaoting发布了新的文献求助10
3分钟前
Demi_Ming完成签到,获得积分10
3分钟前
4etqetgea发布了新的文献求助30
3分钟前
3分钟前
dll发布了新的文献求助10
3分钟前
情怀应助张居居采纳,获得10
3分钟前
熊仔仔熊完成签到 ,获得积分10
3分钟前
renxiaoting发布了新的文献求助30
3分钟前
3分钟前
张居居发布了新的文献求助10
3分钟前
火火完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI5应助天真咖啡豆采纳,获得10
4分钟前
4etqetgea完成签到,获得积分10
4分钟前
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770435
求助须知:如何正确求助?哪些是违规求助? 3315468
关于积分的说明 10176364
捐赠科研通 3030472
什么是DOI,文献DOI怎么找? 1662905
邀请新用户注册赠送积分活动 795232
科研通“疑难数据库(出版商)”最低求助积分说明 756698