MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:3
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyJYbs发布了新的文献求助10
1秒前
mmol发布了新的文献求助10
3秒前
zhangxr发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
且从容完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
田様应助bioglia采纳,获得10
6秒前
JamesPei应助年轻的藏今采纳,获得10
7秒前
v1008完成签到,获得积分10
7秒前
Rigel发布了新的文献求助10
8秒前
胡萝卜的外套完成签到,获得积分10
8秒前
jessica完成签到,获得积分10
8秒前
烟花应助inshialla采纳,获得10
9秒前
9秒前
9秒前
naturehome发布了新的文献求助10
9秒前
beichuanheqi发布了新的文献求助10
9秒前
望TIAN发布了新的文献求助10
10秒前
轻松的绮菱完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
qq发布了新的文献求助10
12秒前
12秒前
12秒前
FAYE发布了新的文献求助10
13秒前
祁乾发布了新的文献求助10
14秒前
自然的珩完成签到,获得积分10
14秒前
七海之风完成签到,获得积分10
14秒前
15秒前
年轻的藏今完成签到,获得积分20
15秒前
斯文败类应助zhangxr采纳,获得10
15秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542