已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:12
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐甜瓜发布了新的文献求助10
4秒前
memory完成签到,获得积分10
5秒前
jy完成签到 ,获得积分20
6秒前
上官若男应助贪玩的橘子采纳,获得10
7秒前
Smile发布了新的文献求助30
12秒前
12秒前
12秒前
山山完成签到 ,获得积分10
13秒前
李华完成签到 ,获得积分10
14秒前
12A完成签到,获得积分10
16秒前
Aurora发布了新的文献求助10
19秒前
无奈的灵松完成签到 ,获得积分20
21秒前
JY完成签到 ,获得积分20
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
汉堡包应助科研通管家采纳,获得30
21秒前
GingerF应助科研通管家采纳,获得100
21秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
小二完成签到,获得积分10
22秒前
痛痛痛完成签到,获得积分10
26秒前
化学之星完成签到,获得积分10
26秒前
qingsyxuan完成签到,获得积分10
27秒前
小圆圈发布了新的文献求助10
27秒前
小杨应助lhy采纳,获得10
29秒前
徐凤年完成签到,获得积分10
37秒前
39秒前
小油菜完成签到 ,获得积分10
41秒前
Adalwolf完成签到,获得积分10
41秒前
SciGPT应助娜娜采纳,获得30
42秒前
franklin_fsz完成签到,获得积分10
43秒前
43秒前
王欣完成签到 ,获得积分10
44秒前
ccm应助Adalwolf采纳,获得10
46秒前
48秒前
GingerF举报LBX求助涉嫌违规
49秒前
俏皮访烟发布了新的文献求助10
50秒前
lulibohan完成签到,获得积分10
53秒前
53秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345477
求助须知:如何正确求助?哪些是违规求助? 4480424
关于积分的说明 13946213
捐赠科研通 4377929
什么是DOI,文献DOI怎么找? 2405477
邀请新用户注册赠送积分活动 1398087
关于科研通互助平台的介绍 1370475