MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 卷积神经网络 图像融合 图像配准 编码器 计算机视觉 图像(数学) 算法 操作系统
作者
Xinyu Xie,Xiaozhi Zhang,Shengcheng Ye,Dongping Xiong,Lijun Ouyang,Bin Yang,Hong Zhou,Yaping Wan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:12
标识
DOI:10.1109/tim.2023.3317470
摘要

It is crucial to integrate the complementary information of multimodal medical images for enhancing the image quality in clinical diagnosis. Convolutional neural network (CNN) based deep learning methods have been widely utilized for image fusion due to their strong modeling ability. However, CNNs fail to build the long-range dependencies in an image, which limits the fusion performance. To address this issue, in this work, we develop a new unsupervised multimodal medical image fusion framework that combines the Swin Transformer and CNN. The proposed model follows a two-stage training strategy, where an auto-encoder is trained to extract multiple deep features and reconstruct fused images. And a novel residual Swin-Convolution fusion (RSCF) module is designed to fuse the multiscale features. Specifically, it consists of a global residual Swin Transformer branch for capturing the global contextual information, as well as a local gradient residual dense branch for capturing the local fine-grained information. To further effectively integrate more meaningful information and ensure the visual quality of fused images, we define a joint loss function including content loss and intensity loss to constrain the RSCF fusion module. Moreover, we introduce an adaptive weight block to assign learnable weights in the loss function, which can control the information preservation degree of source images. In such cases, abundant texture features from MRI images and appropriate intensity information from functional images can be well preserved simultaneously. Extensive comparisons have been conducted between the proposed model and other state-of-the-art fusion methods on CT-MRI, PET-MRI, and SPECT-MRI image fusion tasks. Both qualitative and quantitative comparisons have demonstrated the superiority of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董天发布了新的文献求助10
刚刚
严坤坤完成签到,获得积分20
刚刚
1秒前
ATTENTION完成签到,获得积分10
1秒前
1秒前
1秒前
英姑应助行简采纳,获得10
1秒前
1秒前
Ivy发布了新的文献求助10
1秒前
2秒前
2秒前
heiyeshizhe发布了新的文献求助10
2秒前
青炀应助ceds采纳,获得10
3秒前
leezh发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
sunidea完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI6应助wenxianxiazai123采纳,获得10
4秒前
哆啦A梦发布了新的文献求助10
4秒前
雪白以冬发布了新的文献求助10
4秒前
盼风思月发布了新的文献求助15
4秒前
5秒前
幸运小怪兽完成签到,获得积分10
5秒前
youy发布了新的文献求助10
5秒前
5秒前
niuniu完成签到,获得积分10
5秒前
fyp发布了新的文献求助10
5秒前
liuHX完成签到,获得积分10
5秒前
Maestro_S发布了新的文献求助10
6秒前
mmx发布了新的文献求助10
6秒前
Eternitymaria完成签到,获得积分10
6秒前
明哥发布了新的文献求助10
6秒前
九三发布了新的文献求助10
6秒前
Alex发布了新的文献求助10
6秒前
阳谋无解发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326998
求助须知:如何正确求助?哪些是违规求助? 4467212
关于积分的说明 13900001
捐赠科研通 4359740
什么是DOI,文献DOI怎么找? 2394751
邀请新用户注册赠送积分活动 1388295
关于科研通互助平台的介绍 1359072