保险丝(电气)
卷积(计算机科学)
残余物
分割
编码器
计算机科学
图像分割
人工智能
图像(数学)
算法
编码(集合论)
计算机视觉
模式识别(心理学)
工程类
集合(抽象数据类型)
人工神经网络
电气工程
程序设计语言
操作系统
作者
Fei Li,Xiaoyan Liu,Yufeng Yin,Zongping Li
标识
DOI:10.1109/tim.2023.3317480
摘要
This paper presents DDR-Unet, a high-accuracy and efficient method for ore image segmentation (OIS). OIS is a crucial step in measuring ore particle size distribution (PSD), but it faces challenges due to variations in particle sizes, shapes, overlaps, and powder interference. DDR-Unet improves U-Net in three aspects: encoder, decoder, and loss function. The encoder adopts deformable convolution to capture ore features of different sizes and shapes. The decoder employs multi-level dense residual connections to fuse low-level and high-level features. The loss function uses weight-adaptive BCE to balance the number of ore and non-ore samples. We evaluate DDR-Unet on an ore dataset and two public datasets and compare it with ten state-of-the-art segmentation methods. DDR-Unet outperforms all methods in OIS performance and PSD error. The code is available at: https://github.com/lifeiwen/DDR-Unet-for-ore-image-segmentat.
科研通智能强力驱动
Strongly Powered by AbleSci AI