RLGrid: Reinforcement Learning Controlled Grid Deformation for Coarse-to-Fine Point Could Completion

计算机科学 强化学习 点云 网格 自编码 航程(航空) 点(几何) 人工智能 云计算 特征(语言学) 算法 深度学习 几何学 数学 语言学 哲学 材料科学 复合材料 操作系统
作者
Shanshan Li,Pan Gao,Xiaoyang Tan,Wei Xiang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:1
标识
DOI:10.1109/tmm.2023.3318327
摘要

Many point cloud completion methods typically rely on two steps: coarse generation and 2D Grid deformed fine output. However, in the fine generation, the expansion range (2D Grid Scale) required by each point cloud sample may be vastly different. For example, if the expansion range for a vessel shape is applied to a table shape, the final output may be blurry or sparse. To this end, we propose the RLGrid, Reinforcement Learning Controlled Grid Deformation. In detail, we firstly obtain two point cloud skeletons by two branches. One is to use an autoencoder, and the other is to convert the randomly generated normal distribution to coarse point cloud by GAN. We choose the one with smaller chamfer distance between coarse output and incomplete input as the input of the second stage. Then, a Reinforcement Learning (RL) agent is designed to select the appropriate expansion range based on the feature of each point cloud, and generate a 2D Grid. Finally, all the features are concatenated and sent into a Multilayer Perceptron to obtain the detailed complete point cloud. Experimental results show that RLGrid achieves state-of-the-art performance on various datasets. To the best of our knowledge, RL is not widely used in point cloud completion task due to lack of custom environment, and the proposed RLGrid provides an insight on how to formulate 2D Grid deformation as a sequential decision making problem. Further, it can also be plug-and-play on any 2D Grid features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助ZZZ采纳,获得10
刚刚
1秒前
顺心书琴完成签到,获得积分10
1秒前
习习应助Nifeng采纳,获得10
1秒前
mrmrer发布了新的文献求助10
1秒前
3秒前
MUSTer一一完成签到 ,获得积分10
3秒前
通通通完成签到,获得积分10
3秒前
3秒前
务实的菓完成签到 ,获得积分10
4秒前
似水流年完成签到,获得积分10
4秒前
An慧完成签到,获得积分10
4秒前
Hello应助阿金采纳,获得10
4秒前
4秒前
4秒前
6秒前
顾夏包完成签到,获得积分10
6秒前
小土豆发布了新的文献求助50
7秒前
科研通AI5应助跑在颖采纳,获得10
7秒前
追寻代真发布了新的文献求助10
8秒前
mrmrer完成签到,获得积分20
8秒前
8秒前
8秒前
毛慢慢发布了新的文献求助10
9秒前
9秒前
今天不学习明天变垃圾完成签到,获得积分10
9秒前
10秒前
10秒前
布布完成签到,获得积分10
11秒前
一独白发布了新的文献求助10
11秒前
周周完成签到 ,获得积分10
11秒前
淡然完成签到,获得积分10
12秒前
明理小土豆完成签到,获得积分10
12秒前
刘国建郭菱香完成签到,获得积分10
12秒前
嘤嘤嘤完成签到,获得积分10
12秒前
九川应助粱自中采纳,获得10
12秒前
无辜之卉完成签到,获得积分10
13秒前
无花果应助Island采纳,获得10
13秒前
13秒前
SHDeathlock发布了新的文献求助200
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762