RLGrid: Reinforcement Learning Controlled Grid Deformation for Coarse-to-Fine Point Could Completion

计算机科学 强化学习 点云 网格 自编码 航程(航空) 点(几何) 人工智能 云计算 特征(语言学) 算法 深度学习 几何学 数学 操作系统 哲学 复合材料 语言学 材料科学
作者
Shanshan Li,Pan Gao,Xiaoyang Tan,Wei Xiang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:1
标识
DOI:10.1109/tmm.2023.3318327
摘要

Many point cloud completion methods typically rely on two steps: coarse generation and 2D Grid deformed fine output. However, in the fine generation, the expansion range (2D Grid Scale) required by each point cloud sample may be vastly different. For example, if the expansion range for a vessel shape is applied to a table shape, the final output may be blurry or sparse. To this end, we propose the RLGrid, Reinforcement Learning Controlled Grid Deformation. In detail, we firstly obtain two point cloud skeletons by two branches. One is to use an autoencoder, and the other is to convert the randomly generated normal distribution to coarse point cloud by GAN. We choose the one with smaller chamfer distance between coarse output and incomplete input as the input of the second stage. Then, a Reinforcement Learning (RL) agent is designed to select the appropriate expansion range based on the feature of each point cloud, and generate a 2D Grid. Finally, all the features are concatenated and sent into a Multilayer Perceptron to obtain the detailed complete point cloud. Experimental results show that RLGrid achieves state-of-the-art performance on various datasets. To the best of our knowledge, RL is not widely used in point cloud completion task due to lack of custom environment, and the proposed RLGrid provides an insight on how to formulate 2D Grid deformation as a sequential decision making problem. Further, it can also be plug-and-play on any 2D Grid features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁jj完成签到,获得积分10
1秒前
sylvia完成签到,获得积分10
1秒前
小遇完成签到 ,获得积分10
2秒前
4秒前
7秒前
小言发布了新的文献求助10
8秒前
liu发布了新的文献求助30
10秒前
victor完成签到,获得积分10
11秒前
11秒前
Zx_1993应助hangboy采纳,获得30
12秒前
sqqq完成签到 ,获得积分10
13秒前
2953685951完成签到,获得积分10
14秒前
会飞的猪完成签到,获得积分10
15秒前
讨厌鬼完成签到,获得积分10
18秒前
夏未央完成签到,获得积分10
18秒前
小言完成签到,获得积分20
21秒前
MetaMysteria完成签到,获得积分10
23秒前
test_20251231发布了新的文献求助50
25秒前
科研通AI2S应助123456采纳,获得10
25秒前
25秒前
胡蝶完成签到 ,获得积分10
27秒前
无情的井完成签到,获得积分10
27秒前
故事细腻完成签到 ,获得积分10
28秒前
tangz发布了新的文献求助10
28秒前
张姚发布了新的文献求助10
28秒前
完美世界应助XIEQ采纳,获得10
29秒前
whoKnows应助Tom采纳,获得20
31秒前
cc发布了新的文献求助10
32秒前
bkagyin应助科研通管家采纳,获得10
34秒前
1101592875应助科研通管家采纳,获得10
34秒前
科目三应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
爆米花应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得30
34秒前
大龙哥886应助科研通管家采纳,获得10
34秒前
香蕉觅云应助科研通管家采纳,获得30
34秒前
宅多点应助科研通管家采纳,获得10
34秒前
1101592875应助科研通管家采纳,获得10
34秒前
34秒前
shhoing应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866