RLGrid: Reinforcement Learning Controlled Grid Deformation for Coarse-to-Fine Point Could Completion

计算机科学 强化学习 点云 网格 自编码 航程(航空) 点(几何) 人工智能 云计算 特征(语言学) 算法 深度学习 几何学 数学 语言学 哲学 材料科学 复合材料 操作系统
作者
Shanshan Li,Pan Gao,Xiaoyang Tan,Wei Xiang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:1
标识
DOI:10.1109/tmm.2023.3318327
摘要

Many point cloud completion methods typically rely on two steps: coarse generation and 2D Grid deformed fine output. However, in the fine generation, the expansion range (2D Grid Scale) required by each point cloud sample may be vastly different. For example, if the expansion range for a vessel shape is applied to a table shape, the final output may be blurry or sparse. To this end, we propose the RLGrid, Reinforcement Learning Controlled Grid Deformation. In detail, we firstly obtain two point cloud skeletons by two branches. One is to use an autoencoder, and the other is to convert the randomly generated normal distribution to coarse point cloud by GAN. We choose the one with smaller chamfer distance between coarse output and incomplete input as the input of the second stage. Then, a Reinforcement Learning (RL) agent is designed to select the appropriate expansion range based on the feature of each point cloud, and generate a 2D Grid. Finally, all the features are concatenated and sent into a Multilayer Perceptron to obtain the detailed complete point cloud. Experimental results show that RLGrid achieves state-of-the-art performance on various datasets. To the best of our knowledge, RL is not widely used in point cloud completion task due to lack of custom environment, and the proposed RLGrid provides an insight on how to formulate 2D Grid deformation as a sequential decision making problem. Further, it can also be plug-and-play on any 2D Grid features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yly发布了新的文献求助10
1秒前
zhl发布了新的文献求助10
1秒前
1秒前
1111完成签到,获得积分10
2秒前
jie完成签到,获得积分10
2秒前
快来拾糖完成签到 ,获得积分10
3秒前
3秒前
852应助hsy采纳,获得10
4秒前
余卓奇完成签到,获得积分10
4秒前
霍明轩完成签到,获得积分10
4秒前
5秒前
wan12138发布了新的文献求助10
6秒前
米修完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
寻雾启事发布了新的文献求助10
8秒前
9秒前
wanci应助韩医生口腔采纳,获得10
9秒前
yly完成签到,获得积分10
9秒前
9秒前
云帆完成签到,获得积分10
9秒前
10秒前
啊嘞嘞发布了新的文献求助10
11秒前
AQI完成签到,获得积分10
11秒前
13秒前
怕黑的颜演完成签到,获得积分10
16秒前
倪倪发布了新的文献求助10
16秒前
SciGPT应助chuzai采纳,获得10
17秒前
qq发布了新的文献求助10
18秒前
芦荟板蓝根完成签到,获得积分10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
柯一一应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
yznfly应助科研通管家采纳,获得30
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
萧水白应助科研通管家采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931