On the visual detection of non-natural records in streamflow time series: challenges and impacts

水流 异常(物理) 环境科学 插值(计算机图形学) 气候学 系列(地层学) 噪音(视频) 目视检查 时间序列 计算机科学 统计 地质学 地理 数学 流域 地图学 动画 古生物学 物理 计算机图形学(图像) 人工智能 图像(数学) 凝聚态物理
作者
Laurent Strohmenger,Éric Sauquet,Claire Bernard,Jérémie Bonneau,Flora Branger,Amélie Bresson,Pierre Brigode,Rémy Buzier,Olivier Delaigue,Alexandre Devers,Guillaume Évin,Maïté Fournier,Shu-Chen Hsu,Sandra Lanini,Alban de Lavenne,Thibault Lemaitre-Basset,Claire Magand,Guilherme Mendoza Guimarães,Max Mentha,Simon Munier,Charles Perrin,Tristan Podechard,Léo Rouchy,Malak Sadki,Myriam Soutif-Bellenger,François Tilmant,Yves Tramblay,Anne-Lise Véron,Jean‐Philippe Vidal,Guillaume Thirel
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:27 (18): 3375-3391 被引量:3
标识
DOI:10.5194/hess-27-3375-2023
摘要

Abstract. Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large visual inspection campaign of 674 streamflow time series in France made by 43 evaluators, who were asked to identify anomalies falling under five categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators, with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牛牛发布了新的文献求助30
刚刚
小明完成签到,获得积分10
1秒前
1秒前
健忘的灵槐完成签到,获得积分10
2秒前
科研通AI2S应助Liuuuu采纳,获得10
3秒前
4秒前
华仔应助ooii采纳,获得10
4秒前
xiaobai123456发布了新的文献求助10
5秒前
XYN1完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI6应助buxiangshangxue采纳,获得10
6秒前
胡帅发布了新的文献求助10
7秒前
爱听歌凤灵完成签到,获得积分10
7秒前
欧阳完成签到,获得积分10
7秒前
成就的发箍完成签到,获得积分10
7秒前
niNe3YUE应助段东洁采纳,获得10
8秒前
科研通AI6应助123123采纳,获得10
8秒前
小丑鱼儿完成签到 ,获得积分10
8秒前
星野完成签到,获得积分10
8秒前
humble完成签到 ,获得积分10
9秒前
花开那年完成签到,获得积分10
10秒前
11秒前
yyy发布了新的文献求助30
11秒前
12秒前
yyzhou完成签到 ,获得积分0
13秒前
霸气的听白关注了科研通微信公众号
13秒前
天天开心完成签到,获得积分0
13秒前
13秒前
14秒前
14秒前
曼波发布了新的文献求助10
14秒前
浮浮沉沉完成签到,获得积分10
15秒前
zcbb完成签到,获得积分10
16秒前
苗条自行车完成签到,获得积分20
16秒前
16秒前
xjx完成签到,获得积分10
16秒前
自由的尔蓉完成签到 ,获得积分10
17秒前
Greyson发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600240
求助须知:如何正确求助?哪些是违规求助? 4685922
关于积分的说明 14840705
捐赠科研通 4675920
什么是DOI,文献DOI怎么找? 2538610
邀请新用户注册赠送积分活动 1505696
关于科研通互助平台的介绍 1471162