亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On the visual detection of non-natural records in streamflow time series: challenges and impacts

水流 异常(物理) 环境科学 插值(计算机图形学) 气候学 系列(地层学) 噪音(视频) 目视检查 时间序列 计算机科学 统计 地质学 地理 数学 流域 地图学 动画 古生物学 物理 计算机图形学(图像) 人工智能 图像(数学) 凝聚态物理
作者
Laurent Strohmenger,Éric Sauquet,Claire Bernard,Jérémie Bonneau,Flora Branger,Amélie Bresson,Pierre Brigode,Rémy Buzier,Olivier Delaigue,Alexandre Devers,Guillaume Évin,Maïté Fournier,Shu-Chen Hsu,Sandra Lanini,Alban de Lavenne,Thibault Lemaitre-Basset,Claire Magand,Guilherme Mendoza Guimarães,Max Mentha,Simon Munier,Charles Perrin,Tristan Podechard,Léo Rouchy,Malak Sadki,Myriam Soutif-Bellenger,François Tilmant,Yves Tramblay,Anne-Lise Véron,Jean‐Philippe Vidal,Guillaume Thirel
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:27 (18): 3375-3391 被引量:3
标识
DOI:10.5194/hess-27-3375-2023
摘要

Abstract. Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large visual inspection campaign of 674 streamflow time series in France made by 43 evaluators, who were asked to identify anomalies falling under five categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators, with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
一念莲花舟完成签到,获得积分10
8秒前
9秒前
9秒前
maher完成签到 ,获得积分10
12秒前
12秒前
13秒前
俏皮跳跳糖完成签到,获得积分10
14秒前
simon完成签到 ,获得积分10
20秒前
kHz完成签到,获得积分10
22秒前
24秒前
小马甲应助道松先生采纳,获得10
27秒前
32秒前
道松先生完成签到,获得积分10
32秒前
Evaporate发布了新的文献求助10
35秒前
35秒前
郁启蒙完成签到 ,获得积分10
38秒前
42秒前
null完成签到,获得积分0
49秒前
duoduoqian发布了新的文献求助10
52秒前
53秒前
古月完成签到 ,获得积分10
57秒前
57秒前
58秒前
58秒前
59秒前
WANG发布了新的文献求助10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
寒玉发布了新的文献求助30
1分钟前
Kkk完成签到 ,获得积分10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
xiaoxiao完成签到,获得积分10
1分钟前
典雅易槐发布了新的文献求助10
1分钟前
1分钟前
99668完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
nini发布了新的文献求助10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493741
求助须知:如何正确求助?哪些是违规求助? 4591745
关于积分的说明 14434583
捐赠科研通 4524146
什么是DOI,文献DOI怎么找? 2478673
邀请新用户注册赠送积分活动 1463681
关于科研通互助平台的介绍 1436464