On the visual detection of non-natural records in streamflow time series: challenges and impacts

水流 异常(物理) 环境科学 插值(计算机图形学) 气候学 系列(地层学) 噪音(视频) 目视检查 时间序列 计算机科学 统计 地质学 地理 数学 流域 地图学 人工智能 物理 动画 古生物学 计算机图形学(图像) 图像(数学) 凝聚态物理
作者
Laurent Strohmenger,Éric Sauquet,Claire Bernard,Jérémie Bonneau,Flora Branger,Amélie Bresson,Pierre Brigode,Rémy Buzier,Olivier Delaigue,Alexandre Devers,Guillaume Évin,Maïté Fournier,Shu-Chen Hsu,Sandra Lanini,Alban de Lavenne,Thibault Lemaitre-Basset,Claire Magand,Guilherme Mendoza Guimarães,Max Mentha,Simon Munier,Charles Perrin,Tristan Podechard,Léo Rouchy,Malak Sadki,Myriam Soutif-Bellenger,François Tilmant,Yves Tramblay,Anne-Lise Véron,Jean‐Philippe Vidal,Guillaume Thirel
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:27 (18): 3375-3391 被引量:3
标识
DOI:10.5194/hess-27-3375-2023
摘要

Abstract. Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large visual inspection campaign of 674 streamflow time series in France made by 43 evaluators, who were asked to identify anomalies falling under five categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators, with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Painkiller_采纳,获得10
1秒前
Hua完成签到,获得积分10
2秒前
ppp完成签到,获得积分10
2秒前
3秒前
5秒前
英勇的严青完成签到,获得积分10
5秒前
6秒前
云止完成签到 ,获得积分10
8秒前
研友_Zb1rln发布了新的文献求助10
9秒前
可可西里发布了新的文献求助80
11秒前
fanxiangli完成签到,获得积分20
12秒前
15秒前
隐形曼青应助Painkiller_采纳,获得10
16秒前
肥猫完成签到,获得积分10
18秒前
19秒前
此时此刻完成签到,获得积分10
20秒前
mary完成签到,获得积分10
21秒前
情怀应助凯撒采纳,获得10
22秒前
小蘑菇应助6and1采纳,获得30
23秒前
不二完成签到 ,获得积分10
24秒前
24秒前
小曾完成签到,获得积分10
25秒前
研友_VZG7GZ应助归海亦云采纳,获得10
26秒前
26秒前
26秒前
6666发布了新的文献求助10
29秒前
龙龙冲完成签到,获得积分20
29秒前
29秒前
30秒前
mary发布了新的文献求助10
31秒前
活力惜海发布了新的文献求助10
33秒前
凯撒发布了新的文献求助10
34秒前
36秒前
英俊的铭应助Painkiller_采纳,获得10
37秒前
JuntaoLi发布了新的文献求助10
38秒前
大模型应助fanxiangli采纳,获得10
39秒前
呼延子默发布了新的文献求助10
43秒前
112发布了新的文献求助10
43秒前
顾矜应助灶鲜森采纳,获得10
44秒前
离言完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400