On the visual detection of non-natural records in streamflow time series: challenges and impacts

水流 异常(物理) 环境科学 插值(计算机图形学) 气候学 系列(地层学) 噪音(视频) 目视检查 时间序列 计算机科学 统计 地质学 地理 数学 流域 地图学 动画 古生物学 物理 计算机图形学(图像) 人工智能 图像(数学) 凝聚态物理
作者
Laurent Strohmenger,Éric Sauquet,Claire Bernard,Jérémie Bonneau,Flora Branger,Amélie Bresson,Pierre Brigode,Rémy Buzier,Olivier Delaigue,Alexandre Devers,Guillaume Évin,Maïté Fournier,Shu-Chen Hsu,Sandra Lanini,Alban de Lavenne,Thibault Lemaitre-Basset,Claire Magand,Guilherme Mendoza Guimarães,Max Mentha,Simon Munier,Charles Perrin,Tristan Podechard,Léo Rouchy,Malak Sadki,Myriam Soutif-Bellenger,François Tilmant,Yves Tramblay,Anne-Lise Véron,Jean‐Philippe Vidal,Guillaume Thirel
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:27 (18): 3375-3391 被引量:3
标识
DOI:10.5194/hess-27-3375-2023
摘要

Abstract. Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large visual inspection campaign of 674 streamflow time series in France made by 43 evaluators, who were asked to identify anomalies falling under five categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators, with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liciky完成签到 ,获得积分10
刚刚
1秒前
1秒前
CodeCraft应助ZDJ采纳,获得10
1秒前
1秒前
四方发布了新的文献求助10
2秒前
ireswork完成签到,获得积分10
3秒前
stand应助怕黑的飞柏采纳,获得10
3秒前
stand应助怕黑的飞柏采纳,获得10
3秒前
stand应助怕黑的飞柏采纳,获得10
3秒前
stand应助怕黑的飞柏采纳,获得10
3秒前
stand应助怕黑的飞柏采纳,获得10
3秒前
3秒前
stand应助怕黑的飞柏采纳,获得10
3秒前
stand应助怕黑的飞柏采纳,获得10
3秒前
3秒前
善学以致用应助橙啊程采纳,获得10
5秒前
中原完成签到,获得积分20
5秒前
5秒前
xiaoyeken发布了新的文献求助200
6秒前
haowei发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
zxyan发布了新的文献求助10
7秒前
HP完成签到,获得积分10
7秒前
中原发布了新的文献求助10
8秒前
beifa完成签到,获得积分10
8秒前
8秒前
Twonej应助星星采纳,获得30
9秒前
陈2026完成签到,获得积分10
9秒前
Ss完成签到,获得积分10
9秒前
小辉辉同学完成签到,获得积分10
10秒前
11秒前
CR完成签到,获得积分10
11秒前
药学小马发布了新的文献求助30
12秒前
蓝天应助DARLING002采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
嘿嘿发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729996
求助须知:如何正确求助?哪些是违规求助? 5321270
关于积分的说明 15317857
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619577
邀请新用户注册赠送积分活动 1569041
关于科研通互助平台的介绍 1525657