亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid CNN-RNN approach for survival analysis in a Lung Cancer Screening study

心肺适能 比例危险模型 医学 队列 生存分析 危险系数 肺癌 内科学 置信区间
作者
Yaozhi Lu,Shahab Aslani,An Zhao,Ahmed Y. Shahin,David Barber,Mark Emberton,Daniel C. Alexander,Joseph Jacob
出处
期刊:Heliyon [Elsevier]
卷期号:9 (8): e18695-e18695 被引量:3
标识
DOI:10.1016/j.heliyon.2023.e18695
摘要

In this study, we present a hybrid CNN-RNN approach to investigate long-term survival of subjects in a lung cancer screening study. Subjects who died of cardiovascular and respiratory causes were identified whereby the CNN model was used to capture imaging features in the CT scans and the RNN model was used to investigate time series and thus global information. To account for heterogeneity in patients' follow-up times, two different variants of LSTM models were evaluated, each incorporating different strategies to address irregularities in follow-up time. The models were trained on subjects who underwent cardiovascular and respiratory deaths and a control cohort matched to participant age, gender, and smoking history. The combined model can achieve an AUC of 0.76 which outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation Coefficient are 0.63 and 0.42 respectively. The generalisability of the model is further validated on an 'external' cohort. The same models were applied to survival analysis with the Cox Proportional Hazard model. It was demonstrated that incorporating the follow-up history can lead to improvement in survival prediction. The Cox neural network can achieve an IPCW C-index of 0.75 on the internal dataset and 0.69 on an external dataset. Delineating subjects at increased risk of cardiorespiratory mortality can alert clinicians to request further more detailed functional or imaging studies to improve the assessment of cardiorespiratory disease burden. Such strategies may uncover unsuspected and under-recognised pathologies thereby potentially reducing patient morbidity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿明发布了新的文献求助30
3秒前
科研小刘发布了新的文献求助10
4秒前
4秒前
天天快乐应助科研小刘采纳,获得10
10秒前
22秒前
Gavin发布了新的文献求助10
34秒前
38秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得30
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
YL完成签到,获得积分10
2分钟前
3分钟前
ling361完成签到,获得积分10
4分钟前
英俊的铭应助忧虑的安青采纳,获得20
4分钟前
大个应助Gavin采纳,获得30
4分钟前
丘比特应助Vashon采纳,获得10
4分钟前
4分钟前
Gavin发布了新的文献求助30
4分钟前
石人达完成签到 ,获得积分10
4分钟前
Star完成签到,获得积分10
4分钟前
5分钟前
TXZ06完成签到,获得积分10
5分钟前
5分钟前
Vashon发布了新的文献求助10
5分钟前
英俊的铭应助天马行空采纳,获得10
6分钟前
6分钟前
檸123456发布了新的文献求助10
6分钟前
ding应助Vashon采纳,获得30
6分钟前
檸123456完成签到,获得积分10
6分钟前
科研通AI2S应助morena采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
天马行空发布了新的文献求助10
6分钟前
6分钟前
哭泣秋蝶发布了新的文献求助10
6分钟前
赵培培发布了新的文献求助10
6分钟前
7分钟前
枫枫枫枫发布了新的文献求助30
7分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126089
求助须知:如何正确求助?哪些是违规求助? 2776278
关于积分的说明 7729727
捐赠科研通 2431748
什么是DOI,文献DOI怎么找? 1292230
科研通“疑难数据库(出版商)”最低求助积分说明 622609
版权声明 600392