Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm: A case study during 2015–2020 in Shaanxi, China

温室气体 贝叶斯概率 能源消耗 环境科学 碳纤维 算法 中国 回归分析 线性回归 回归 计算机科学 机器学习 地理 统计 人工智能 数学 工程类 生态学 电气工程 复合数 考古 生物
作者
Hongye Cao,Ling Han,Ming Liu,Liangzhi Li
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:149: 358-373 被引量:18
标识
DOI:10.1016/j.jes.2023.08.007
摘要

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助直率的问筠采纳,获得10
2秒前
朻安完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
星辰大海应助黑YA采纳,获得10
4秒前
5秒前
chenhouhan发布了新的文献求助20
5秒前
6秒前
6秒前
leez发布了新的文献求助10
7秒前
哎呦你干嘛完成签到,获得积分20
7秒前
Su发布了新的文献求助10
8秒前
pluto应助独特的绮山采纳,获得10
8秒前
wanci应助星星采纳,获得10
9秒前
9秒前
cetomacrogol完成签到,获得积分10
9秒前
10秒前
感动的小懒虫完成签到,获得积分20
10秒前
10秒前
哈哈哈完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
ybybyb1213发布了新的文献求助30
11秒前
yomi完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
热心雪一完成签到 ,获得积分10
14秒前
14秒前
pluto应助平头张采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
liukanhai完成签到,获得积分10
15秒前
zzgpku应助科研通管家采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
zzgpku应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595