Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm: A case study during 2015–2020 in Shaanxi, China

聚类分析 温室气体 空间分析 环境科学 碳纤维 算法 卫星 遥感 计算机科学 地理 人工智能 工程类 生态学 航空航天工程 复合数 生物
作者
Hongye Cao,Han Liu,Ming Liu,Liangzhi Li
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
被引量:2
标识
DOI:10.1016/j.jes.2023.08.007
摘要

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Keu发布了新的文献求助10
1秒前
俗人完成签到,获得积分10
1秒前
静汉发布了新的文献求助10
2秒前
中国人完成签到,获得积分10
2秒前
3秒前
5秒前
Hh发布了新的文献求助10
7秒前
7秒前
静汉完成签到,获得积分10
7秒前
源老头完成签到,获得积分10
8秒前
iNk应助hAFMET采纳,获得10
9秒前
宋66完成签到,获得积分10
9秒前
gqb完成签到,获得积分10
10秒前
佳佳完成签到,获得积分10
10秒前
善学以致用应助xinbowey采纳,获得10
10秒前
王露阳发布了新的文献求助10
10秒前
v啦啦啦啦完成签到 ,获得积分10
12秒前
源老头发布了新的文献求助10
12秒前
令狐磬发布了新的文献求助10
12秒前
lyw完成签到 ,获得积分10
12秒前
Keu完成签到,获得积分10
12秒前
畅快的蛋挞完成签到,获得积分10
13秒前
14秒前
天天好心覃完成签到 ,获得积分10
16秒前
16秒前
小钱钱发布了新的文献求助10
16秒前
savior完成签到 ,获得积分10
19秒前
rose完成签到,获得积分10
20秒前
大麦迪完成签到,获得积分20
20秒前
Akim应助龙卷风摧毁停车场采纳,获得10
21秒前
绛绛完成签到 ,获得积分10
22秒前
踏实的幻珊完成签到 ,获得积分10
23秒前
大个应助德德采纳,获得10
23秒前
24秒前
明亮无颜完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
精灵少女发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187