Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm: A case study during 2015–2020 in Shaanxi, China

温室气体 贝叶斯概率 能源消耗 环境科学 碳纤维 算法 中国 回归分析 线性回归 回归 计算机科学 机器学习 地理 统计 人工智能 数学 工程类 生态学 电气工程 复合数 考古 生物
作者
Hongye Cao,Ling Han,Ming Liu,Liangzhi Li
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:149: 358-373 被引量:18
标识
DOI:10.1016/j.jes.2023.08.007
摘要

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yyj完成签到,获得积分10
2秒前
2秒前
max发布了新的文献求助10
2秒前
3秒前
砂糖完成签到,获得积分20
3秒前
斯文败类应助HCT采纳,获得10
3秒前
志小天发布了新的文献求助10
3秒前
3秒前
充电宝应助Utopia采纳,获得30
3秒前
Lucas应助黄油小花饼干采纳,获得30
4秒前
leslie发布了新的文献求助10
5秒前
Sun_Y完成签到,获得积分10
5秒前
NexusExplorer应助辛勤的映波采纳,获得10
5秒前
5秒前
BowieHuang应助LEEGAN采纳,获得10
5秒前
Lucas应助LEEGAN采纳,获得10
5秒前
砂糖发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
乖不如野发布了新的文献求助10
7秒前
伶俐碧萱完成签到 ,获得积分10
8秒前
青木瓜子完成签到 ,获得积分20
8秒前
8秒前
tree发布了新的文献求助10
9秒前
jiebai发布了新的文献求助10
9秒前
9秒前
hqy完成签到,获得积分10
9秒前
cocopan发布了新的文献求助10
10秒前
blenda发布了新的文献求助20
11秒前
万物可爱完成签到 ,获得积分10
12秒前
爆米花应助LHW采纳,获得10
12秒前
12秒前
嘻嘻哈哈完成签到 ,获得积分10
12秒前
不弱小妖完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809