Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm: A case study during 2015–2020 in Shaanxi, China

温室气体 贝叶斯概率 能源消耗 环境科学 碳纤维 算法 中国 回归分析 线性回归 回归 计算机科学 机器学习 地理 统计 人工智能 数学 工程类 生态学 电气工程 复合数 考古 生物
作者
Hongye Cao,Ling Han,Ming Liu,Liangzhi Li
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:149: 358-373 被引量:18
标识
DOI:10.1016/j.jes.2023.08.007
摘要

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋柚子发布了新的文献求助10
刚刚
2秒前
水水的完成签到 ,获得积分10
2秒前
美好忆之给美好忆之的求助进行了留言
3秒前
我是老大应助glzhou1975采纳,获得10
3秒前
4秒前
小扇完成签到,获得积分0
4秒前
我是老大应助柴柴柴采纳,获得10
4秒前
4秒前
霸气雯完成签到,获得积分10
5秒前
6秒前
xiaxia应助2011509382采纳,获得10
6秒前
shann完成签到,获得积分10
8秒前
浮游应助didi采纳,获得50
8秒前
Mikecheng完成签到,获得积分10
8秒前
zilhua发布了新的文献求助10
9秒前
脑洞疼应助冷傲的从雪采纳,获得10
9秒前
执着的灰狼完成签到,获得积分10
10秒前
十三发布了新的文献求助10
10秒前
达不溜搽发布了新的文献求助10
10秒前
时时晴天发布了新的文献求助10
10秒前
Akim应助轻烟含翠采纳,获得10
11秒前
lyncee应助shann采纳,获得30
12秒前
田様应助2011509382采纳,获得10
12秒前
13秒前
gege发布了新的文献求助30
13秒前
14秒前
852应助xiaowu采纳,获得10
14秒前
aaa123完成签到,获得积分10
17秒前
勤奋柚子完成签到,获得积分10
17秒前
自然雁风完成签到,获得积分10
17秒前
17秒前
柴柴柴发布了新的文献求助10
18秒前
好事成双层吉士汉堡完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
王驰发布了新的文献求助10
18秒前
芝麻汤圆完成签到,获得积分10
19秒前
wanci应助橙子abcy采纳,获得10
20秒前
开心完成签到,获得积分10
22秒前
故意的鼠标完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374