Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm: A case study during 2015–2020 in Shaanxi, China

温室气体 贝叶斯概率 能源消耗 环境科学 碳纤维 算法 中国 回归分析 线性回归 回归 计算机科学 机器学习 地理 统计 人工智能 数学 工程类 生态学 电气工程 复合数 考古 生物
作者
Hongye Cao,Ling Han,Ming Liu,Liangzhi Li
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:149: 358-373 被引量:18
标识
DOI:10.1016/j.jes.2023.08.007
摘要

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
呆萌沛柔发布了新的文献求助10
1秒前
2秒前
酷波er应助ghkjl采纳,获得10
3秒前
sophia完成签到,获得积分10
3秒前
kaia发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
kirito发布了新的文献求助10
4秒前
曹梦龙发布了新的文献求助10
4秒前
温暖宛筠发布了新的文献求助10
4秒前
5秒前
隐形曼青应助77采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
WANG完成签到,获得积分10
5秒前
丁昆发布了新的文献求助10
6秒前
6秒前
TinTin发布了新的文献求助10
7秒前
7秒前
科研通AI6应助BENRONG采纳,获得10
8秒前
8秒前
今后应助侠客采纳,获得10
8秒前
完美世界应助刘一一采纳,获得10
9秒前
情怀应助油条狗采纳,获得10
9秒前
fu完成签到,获得积分10
10秒前
10秒前
cc251672发布了新的文献求助10
11秒前
只爱LJT发布了新的文献求助10
11秒前
小J应助锅巴采纳,获得10
12秒前
12秒前
13秒前
李健应助天音法里奈采纳,获得10
14秒前
科目三应助rattlebox321采纳,获得10
15秒前
15秒前
15秒前
16秒前
老实奇迹发布了新的文献求助10
17秒前
17秒前
Pioneer完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175