Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm: A case study during 2015–2020 in Shaanxi, China

温室气体 贝叶斯概率 能源消耗 环境科学 碳纤维 算法 中国 回归分析 线性回归 回归 计算机科学 机器学习 地理 统计 人工智能 数学 工程类 生态学 电气工程 复合数 考古 生物
作者
Hongye Cao,Ling Han,Ming Liu,Liangzhi Li
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:149: 358-373 被引量:18
标识
DOI:10.1016/j.jes.2023.08.007
摘要

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm发布了新的文献求助10
刚刚
wtjhhh完成签到,获得积分10
1秒前
宋汶静发布了新的文献求助10
1秒前
kkm发布了新的文献求助10
1秒前
万能图书馆应助Walden采纳,获得10
1秒前
1秒前
奥福少摩发布了新的文献求助30
2秒前
2秒前
zxzxzxzxzx发布了新的文献求助10
2秒前
思源应助道道sy采纳,获得30
3秒前
舒服的糖豆完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
斯文败类应助啊啊啊啊啊采纳,获得10
4秒前
youlinn完成签到 ,获得积分10
4秒前
4秒前
香蕉诗蕊举报羟醛缩合求助涉嫌违规
4秒前
4秒前
4秒前
积极行天发布了新的文献求助10
4秒前
cicicixixici完成签到,获得积分20
5秒前
5秒前
我是老大应助张民鑫采纳,获得10
5秒前
5秒前
5秒前
5秒前
小蘑菇应助努力的大角牛采纳,获得10
6秒前
肖云完成签到 ,获得积分10
6秒前
小秦爱学习完成签到,获得积分20
6秒前
消消乐完成签到 ,获得积分20
6秒前
cxt发布了新的文献求助10
6秒前
刘君卓发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
苯酚完成签到 ,获得积分10
8秒前
汉堡包应助贪玩的如容采纳,获得10
8秒前
kkm完成签到,获得积分10
9秒前
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450