Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma

医学 列线图 肝细胞癌 接收机工作特性 逻辑回归 无线电技术 放射科 数据集 核医学 人工智能 肿瘤科 内科学 计算机科学
作者
Mengsi Li,Yaheng Fan,Huayu You,Chao Li,Ma Luo,Jing Zhou,Anqi Li,Lina Zhang,Yu Xiao,Weiwei Deng,Jinhui Zhou,Dingyue Zhang,Zhongping Zhang,Haimei Chen,Yuanqiang Xiao,Bingsheng Huang,Jin Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:11
标识
DOI:10.1148/radiol.230255
摘要

Background It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC). Purpose To evaluate the diagnostic performance of dual-phase contrast-enhanced multiparametric DECT for predicting MTM HCC. Materials and Methods Patients with histopathologic examination-confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival. Results A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03). Conclusion A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝西装舞王完成签到,获得积分10
1秒前
2秒前
2秒前
Ava应助句号采纳,获得10
2秒前
大力翠丝发布了新的文献求助10
2秒前
THF完成签到,获得积分10
3秒前
江江完成签到,获得积分10
3秒前
3秒前
ttxxcdx完成签到,获得积分10
4秒前
6秒前
sky123发布了新的文献求助200
6秒前
kocupp发布了新的文献求助50
7秒前
NexusExplorer应助花开采纳,获得10
7秒前
北栀发布了新的文献求助10
8秒前
善学以致用应助wangayting采纳,获得30
8秒前
江江发布了新的文献求助30
9秒前
9秒前
乐观又lucky完成签到,获得积分10
10秒前
一蓑烟雨发布了新的文献求助10
11秒前
11秒前
思源应助123采纳,获得10
14秒前
淡淡菠萝发布了新的文献求助10
15秒前
倪莺媛发布了新的文献求助50
16秒前
16秒前
大力翠丝完成签到,获得积分10
16秒前
T_MC郭发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
zzzhw发布了新的文献求助10
18秒前
IBMffff应助swu采纳,获得10
19秒前
蔺丹翠发布了新的文献求助50
19秒前
Dellamoffy完成签到,获得积分10
20秒前
上古完成签到,获得积分20
21秒前
zhz发布了新的文献求助10
22秒前
Yara.H发布了新的文献求助10
22秒前
23秒前
oops完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153422
求助须知:如何正确求助?哪些是违规求助? 2804660
关于积分的说明 7860714
捐赠科研通 2462621
什么是DOI,文献DOI怎么找? 1310839
科研通“疑难数据库(出版商)”最低求助积分说明 629400
版权声明 601794