Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma

医学 列线图 肝细胞癌 接收机工作特性 逻辑回归 无线电技术 放射科 数据集 核医学 人工智能 肿瘤科 内科学 计算机科学
作者
Mengsi Li,Yaheng Fan,Huayu You,Chao Li,Ma Luo,Jing Zhou,Anqi Li,Lina Zhang,Yu Xiao,Weiwei Deng,Jinhui Zhou,Dingyue Zhang,Zhongping Zhang,Haimei Chen,Yuanqiang Xiao,Bingsheng Huang,Jin Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:29
标识
DOI:10.1148/radiol.230255
摘要

Background It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC). Purpose To evaluate the diagnostic performance of dual-phase contrast-enhanced multiparametric DECT for predicting MTM HCC. Materials and Methods Patients with histopathologic examination-confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival. Results A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03). Conclusion A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
内向南风完成签到 ,获得积分10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得30
6秒前
6秒前
高高亿先应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
1sunpf完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
spf完成签到,获得积分10
7秒前
荒野风发布了新的文献求助10
7秒前
luxkex完成签到,获得积分10
7秒前
7秒前
奶黄包发布了新的文献求助10
7秒前
有求必_应完成签到,获得积分10
8秒前
9秒前
ShuY完成签到,获得积分10
9秒前
careyzhou发布了新的文献求助10
9秒前
Ran-HT完成签到,获得积分10
10秒前
开小森发布了新的文献求助10
11秒前
科研通AI2S应助荒野风采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029