Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma

医学 列线图 肝细胞癌 接收机工作特性 逻辑回归 无线电技术 放射科 数据集 核医学 人工智能 肿瘤科 内科学 计算机科学
作者
Mengsi Li,Yaheng Fan,Huayu You,Chao Li,Ma Luo,Jing Zhou,Anqi Li,Lina Zhang,Yu Xiao,Weiwei Deng,Jinhui Zhou,Dingyue Zhang,Zhongping Zhang,Haimei Chen,Yuanqiang Xiao,Bingsheng Huang,Jin Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:29
标识
DOI:10.1148/radiol.230255
摘要

Background It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC). Purpose To evaluate the diagnostic performance of dual-phase contrast-enhanced multiparametric DECT for predicting MTM HCC. Materials and Methods Patients with histopathologic examination-confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival. Results A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03). Conclusion A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福同学完成签到,获得积分10
1秒前
徐逊发布了新的文献求助10
1秒前
1秒前
Li完成签到,获得积分10
2秒前
淡淡书文发布了新的文献求助10
2秒前
852应助o30采纳,获得10
2秒前
英吉利25发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
亦承梦发布了新的文献求助10
3秒前
光亮藏鸟发布了新的文献求助10
3秒前
shiwo110完成签到,获得积分10
4秒前
慕青应助LR采纳,获得10
5秒前
淡然的衣完成签到,获得积分10
5秒前
梦梦完成签到,获得积分10
5秒前
爆米花应助莉莉子采纳,获得10
5秒前
6秒前
6秒前
6秒前
二十五发布了新的文献求助10
6秒前
rxb发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
灵巧土豆完成签到 ,获得积分10
8秒前
9秒前
胖虎应助研友_Z345g8采纳,获得10
9秒前
pluto应助chenhua5460采纳,获得10
9秒前
务实含羞草完成签到 ,获得积分10
9秒前
晨曦完成签到,获得积分10
9秒前
10秒前
dkun发布了新的文献求助30
10秒前
1111应助Ryan采纳,获得10
11秒前
11秒前
zhenzhen发布了新的文献求助10
12秒前
huahua发布了新的文献求助10
12秒前
anan完成签到,获得积分10
12秒前
ljs发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827