Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma

医学 列线图 肝细胞癌 接收机工作特性 逻辑回归 无线电技术 放射科 数据集 核医学 人工智能 肿瘤科 内科学 计算机科学
作者
Mengsi Li,Yaheng Fan,Huayu You,Chao Li,Ma Luo,Jing Zhou,Anqi Li,Lina Zhang,Yu Xiao,Weiwei Deng,Jinhui Zhou,Dingyue Zhang,Zhongping Zhang,Haimei Chen,Yuanqiang Xiao,Bingsheng Huang,Jin Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (2) 被引量:18
标识
DOI:10.1148/radiol.230255
摘要

Background It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC). Purpose To evaluate the diagnostic performance of dual-phase contrast-enhanced multiparametric DECT for predicting MTM HCC. Materials and Methods Patients with histopathologic examination-confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival. Results A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03). Conclusion A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方勇飞发布了新的文献求助10
刚刚
郭菱香完成签到 ,获得积分20
刚刚
皮念寒完成签到,获得积分10
刚刚
顺其自然_666888完成签到,获得积分10
刚刚
1秒前
向上的小v完成签到 ,获得积分10
2秒前
2秒前
4秒前
酷酷紫蓝完成签到 ,获得积分10
4秒前
4秒前
方勇飞完成签到,获得积分10
4秒前
LYZ完成签到,获得积分10
4秒前
黄景滨完成签到 ,获得积分20
5秒前
5秒前
123456完成签到,获得积分20
5秒前
hkl1542完成签到,获得积分10
6秒前
6秒前
caohuijun发布了新的文献求助10
7秒前
杳鸢应助韦颖采纳,获得20
8秒前
8秒前
wshwx完成签到 ,获得积分10
8秒前
8秒前
魏伯安发布了新的文献求助10
9秒前
9秒前
传奇3应助daniel采纳,获得10
9秒前
ding应助帅气的听莲采纳,获得10
9秒前
sunshine完成签到,获得积分10
10秒前
大方嵩发布了新的文献求助10
10秒前
SciGPT应助tianny采纳,获得10
10秒前
skier发布了新的文献求助10
11秒前
HHHWJ完成签到 ,获得积分10
11秒前
敏感的芷发布了新的文献求助10
11秒前
怡然剑成关注了科研通微信公众号
11秒前
共享精神应助zhouleibio采纳,获得10
11秒前
贤惠的早晨完成签到 ,获得积分10
12秒前
六月毕业发布了新的文献求助10
12秒前
科研通AI5应助平常的毛豆采纳,获得10
12秒前
韦颖完成签到,获得积分20
14秒前
沉默的冬寒完成签到 ,获得积分10
15秒前
海科科给海科科的求助进行了留言
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824