Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset from UAV Images

杂草 计算机科学 人工智能 精准农业 目标检测 鉴定(生物学) 机器学习 模式识别(心理学) 农业 生态学 农学 生物 植物
作者
Ignazio Gallo,Anwar Ur Rehman,Ramin Heidarian Dehkordi,Nicola Landro,Riccardo La Grassa,Mirco Boschetti
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (2): 539-539 被引量:84
标识
DOI:10.3390/rs15020539
摘要

Weeds are a crucial threat to agriculture, and in order to preserve crop productivity, spreading agrochemicals is a common practice with a potential negative impact on the environment. Methods that can support intelligent application are needed. Therefore, identification and mapping is a critical step in performing site-specific weed management. Unmanned aerial vehicle (UAV) data streams are considered the best for weed detection due to the high resolution and flexibility of data acquisition and the spatial explicit dimensions of imagery. However, with the existence of unstructured crop conditions and the high biological variation of weeds, it remains a difficult challenge to generate accurate weed recognition and detection models. Two critical barriers to tackling this challenge are related to (1) a lack of case-specific, large, and comprehensive weed UAV image datasets for the crop of interest, (2) defining the most appropriate computer vision (CV) weed detection models to assess the operationality of detection approaches in real case conditions. Deep Learning (DL) algorithms, appropriately trained to deal with the real case complexity of UAV data in agriculture, can provide valid alternative solutions with respect to standard CV approaches for an accurate weed recognition model. In this framework, this paper first introduces a new weed and crop dataset named Chicory Plant (CP) and then tests state-of-the-art DL algorithms for object detection. A total of 12,113 bounding box annotations were generated to identify weed targets (Mercurialis annua) from more than 3000 RGB images of chicory plantations, collected using a UAV system at various stages of crop and weed growth. Deep weed object detection was conducted by testing the most recent You Only Look Once version 7 (YOLOv7) on both the CP and publicly available datasets (Lincoln beet (LB)), for which a previous version of YOLO was used to map weeds and crops. The YOLOv7 results obtained for the CP dataset were encouraging, outperforming the other YOLO variants by producing value metrics of 56.6%, 62.1%, and 61.3% for the mAP@0.5 scores, recall, and precision, respectively. Furthermore, the YOLOv7 model applied to the LB dataset surpassed the existing published results by increasing the mAP@0.5 scores from 51% to 61%, 67.5% to 74.1%, and 34.6% to 48% for the total mAP, mAP for weeds, and mAP for sugar beets, respectively. This study illustrates the potential of the YOLOv7 model for weed detection but remarks on the fundamental needs of large-scale, annotated weed datasets to develop and evaluate models in real-case field circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
真是麻烦完成签到 ,获得积分10
3秒前
8941完成签到 ,获得积分10
4秒前
夜离殇完成签到,获得积分10
4秒前
silence完成签到,获得积分10
5秒前
6秒前
6秒前
欧阳静芙发布了新的文献求助10
7秒前
silence发布了新的文献求助10
8秒前
科目三应助Anna采纳,获得30
8秒前
从容芮应助11采纳,获得10
9秒前
ruoyi完成签到,获得积分20
9秒前
9秒前
liziming发布了新的文献求助10
10秒前
Cloud完成签到 ,获得积分10
12秒前
小白白白完成签到 ,获得积分10
12秒前
levi发布了新的文献求助10
13秒前
13秒前
坦率天思完成签到,获得积分10
14秒前
NexusExplorer应助xiaowanzi采纳,获得10
15秒前
15秒前
万能图书馆应助气泡水采纳,获得10
16秒前
任性翠安完成签到,获得积分10
18秒前
钰幕完成签到,获得积分10
19秒前
11完成签到,获得积分20
20秒前
感动白开水完成签到,获得积分10
21秒前
22秒前
24秒前
eden发布了新的文献求助10
28秒前
28秒前
仁爱的戒指完成签到 ,获得积分10
29秒前
29秒前
30秒前
brave heart完成签到,获得积分10
31秒前
cmc12314完成签到 ,获得积分10
31秒前
32秒前
zsj3787发布了新的文献求助10
34秒前
脑洞疼应助miaomiao采纳,获得10
34秒前
levi完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143637
求助须知:如何正确求助?哪些是违规求助? 2795095
关于积分的说明 7813306
捐赠科研通 2451156
什么是DOI,文献DOI怎么找? 1304338
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601393