果胶酸裂解酶
表(数据库)
化学
果胶酶
开裂
食品科学
基因
园艺
生物化学
植物
生物
酶
计算机科学
有机化学
数据库
作者
Jun Yu,Rong Wang,Wentao Ma,Shumin Lei,Mingtao Zhu,Guoshun Yang
标识
DOI:10.1021/acs.jafc.2c05996
摘要
Fruit cracking seriously affects the commercial value of table grapes. To explore whether cell wall disassembly influences grape berry cracking, first, the differences in the cell wall metabolism were compared between cracking-resistant "Shennongjinhuanghou" (SN) and cracking-susceptible "Xiangfei" (XF) varieties. Our results showed that cell wall disassembly events were extremely different between "SN" and "XF." The cracking-resistant "SN" had a higher pectinmethylesterase activity in the early stage and lower polygalacturonase, β-galactosidase, pectate lyase, and cellulase activities from veraison, cooperatively yielding higher ionically bound pectin, covalently bound pectin, hemicellulose, and lower water-soluble pectin, leading to a stronger skin break force and elasticity and conferring "SN" with higher cracking resistance. Furthermore, the function of the VvPL1 gene in fruit cracking was verified by heterologously transforming tomatoes. The transgenic experiment showed that overexpressed fruits had a higher activity of pectate lyase from the breaking stage and a lower level of covalently bound pectin, ionically bound pectin, cellulose, and hemicellulose and a higher level of water-soluble pectin at the red ripe stage, which resulted in a significantly reduced skin break force and flesh firmness and increased fruit cracking incidences. In conclusion, our results demonstrated that the cracking susceptibility of the grape berry is closely related to cell wall disassembly events and VvPL1 plays an important role in fruit cracking.
科研通智能强力驱动
Strongly Powered by AbleSci AI