Models of ultrasonic radiomics and clinical characters for lymph node metastasis assessment in thyroid cancer: a retrospective study

接收机工作特性 医学 甲状腺癌 淋巴结 放射科 淋巴结转移 甲状腺结节 甲状腺癌 转移 特征选择 颈淋巴结 回顾性队列研究 癌症 人工智能 甲状腺 计算机科学 病理 内科学
作者
Hui Zhu,Bing Yu,Yanyan Li,Yuhua Zhang,Juebin Jin,Yao Ai,Xiance Jin,Yan Yang
出处
期刊:PeerJ [PeerJ]
卷期号:11: e14546-e14546 被引量:3
标识
DOI:10.7717/peerj.14546
摘要

Background Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma provided a basis for tumor staging and treatment decision. This study aimed to investigate the utility of machine learning and develop different models to preoperatively predict cervical lymph node metastasis based on ultrasonic radiomic features and clinical characteristics in papillary thyroid carcinoma nodules. Methods Data from 400 papillary thyroid carcinoma nodules were included and divided into training and validation group. With the help of machine learning, clinical characteristics and ultrasonic radiomic features were extracted and selected using randomforest and least absolute shrinkage and selection operator regression before classified by five classifiers. Finally, 10 models were built and their area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value and negative predictive value were measured. Results Among the 10 models, RF-RF model revealed the highest area under curve (0.812) and accuracy (0.7542) in validation group. The top 10 variables of it included age, seven textural features, one shape feature and one first-order feature, in which eight were high-dimensional features. Conclusions RF-RF model showed the best predictive performance for cervical lymph node metastasis. And the importance features selected by it highlighted the unique role of higher-dimensional statistical methods for radiomics analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助12334采纳,获得10
1秒前
2秒前
LL77发布了新的文献求助10
2秒前
英姑应助Priscilla采纳,获得30
3秒前
qq1640564935发布了新的文献求助10
4秒前
5秒前
香蕉觅云应助你是谁采纳,获得10
5秒前
5秒前
7秒前
迢迢笙箫给迢迢笙箫的求助进行了留言
7秒前
述说发布了新的文献求助10
8秒前
8秒前
Wenpandaen应助科研通管家采纳,获得20
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
年年发布了新的文献求助10
10秒前
CodeCraft应助Stone采纳,获得50
11秒前
12秒前
做自己的太阳完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
zhangxr发布了新的文献求助10
13秒前
大模型应助Y昂采纳,获得10
14秒前
12334发布了新的文献求助10
15秒前
可爱的函函应助SiDi采纳,获得10
16秒前
你是谁发布了新的文献求助10
17秒前
毛毛酱完成签到,获得积分20
17秒前
MHY发布了新的文献求助10
20秒前
22秒前
xx完成签到,获得积分10
24秒前
zhou完成签到,获得积分10
24秒前
24秒前
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796557
关于积分的说明 7820486
捐赠科研通 2452923
什么是DOI,文献DOI怎么找? 1305285
科研通“疑难数据库(出版商)”最低求助积分说明 627453
版权声明 601464